sharding_optimizer.py 44.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.fluid import unique_name, core
import paddle.fluid as fluid

from paddle.distributed.fleet.meta_optimizers.common import OpRole, OP_ROLE_VAR_KEY, CollectiveHelper
L
lilong12 已提交
19
from paddle.distributed.fleet.meta_optimizers.common import is_backward_op, is_optimizer_op, is_update_op
20 21 22 23 24
from paddle.distributed.fleet.meta_optimizers.meta_optimizer_base import MetaOptimizerBase
from paddle.distributed.fleet.meta_optimizers.sharding.shard import Shard, ProgramSegment
from paddle.distributed.fleet.meta_optimizers.sharding.fp16_helper import FP16Utils
from paddle.distributed.fleet.meta_optimizers.sharding.weight_decay_helper import WeightDecayHelper
from paddle.distributed.fleet.meta_optimizers.sharding.gradient_clip_helper import GradientClipHelper
L
lilong12 已提交
25
from .sharding.offload_helper import OffloadHelper
26 27
from paddle.distributed.fleet.meta_optimizers.sharding.prune import ProgramDeps
from paddle.distributed.fleet.meta_optimizers.sharding.utils import *
L
lilong12 已提交
28

29
import logging
30 31 32 33 34 35
from functools import reduce

__all__ = ["ShardingOptimizer"]


class ShardingOptimizer(MetaOptimizerBase):
L
lilong12 已提交
36 37
    """Sharding Optimizer."""

38 39 40 41 42 43
    def __init__(self, optimizer):
        super(ShardingOptimizer, self).__init__(optimizer)
        self.inner_opt = optimizer
        self.meta_optimizers_white_list = [
            "RecomputeOptimizer",
            "AMPOptimizer",
44 45
            "LarsOptimizer",
            "LambOptimizer",
L
lilong12 已提交
46 47
            # "ModelParallelOptimizer",
            "PipelineOptimizer",
48 49 50 51 52 53 54 55 56 57 58 59
        ]
        self.meta_optimizers_black_list = ["GraphExecutionOptimizer", ]
        self._main_program = None
        self._startup_program = None
        self._segments = []
        # params and fp16 params is for broadcast
        self._params = set([])
        self._broadcast_vars = set([])
        # reduced grads to param name
        self._reduced_grads_to_param = {}
        self._shard = Shard()

L
lilong12 已提交
60 61 62 63
        # use sharding as outer parallelism (e.g. inner:Megatron & outer sharding)
        self._as_outer_parallelism = False
        self._inner_parallelism_size = None

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
    def _can_apply(self):
        if not self.role_maker._is_collective:
            return False
        if self.role_maker._worker_num() <= 1:
            return False
        return self.user_defined_strategy.sharding

    def _disable_strategy(self, dist_strategy):
        dist_strategy.sharding = False
        dist_strategy.sharding_configs = {}

    def _enable_strategy(self, dist_strategy, context):
        dist_strategy.sharding = True
        dist_strategy.sharding_configs = {"fuse_broadcast_MB": 32}

    def minimize_impl(self,
                      loss,
                      startup_program=None,
                      parameter_list=None,
                      no_grad_set=None):
L
lilong12 已提交
84
        """Implementation of minimize."""
85 86 87 88
        # TODO: (JZ-LIANG) support multiple comm in future
        # self._nrings = self.user_defined_strategy.nccl_comm_num
        self._nrings_sharding = 1
        self._nrings_dp = 1
89 90
        self._fuse_broadcast_MB = self.user_defined_strategy.sharding_configs[
            "fuse_broadcast_MB"]
91 92
        self.hybrid_dp = self.user_defined_strategy.sharding_configs[
            "hybrid_dp"]
L
lilong12 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105
        self._as_outer_parallelism = self.user_defined_strategy.sharding_configs[
            "as_outer_parallelism"]
        self._inner_parallelism_size = int(
            self.user_defined_strategy.sharding_configs["parallelism"])
        self.use_pipeline = self.user_defined_strategy.sharding_configs[
            "use_pipeline"]
        self.acc_steps = self.user_defined_strategy.sharding_configs[
            "acc_steps"]
        self.schedule_mode = self.user_defined_strategy.sharding_configs[
            "schedule_mode"]
        self.pp_bz = self.user_defined_strategy.sharding_configs["pp_bz"]
        self.pp_allreduce_in_optimize = self.user_defined_strategy.sharding_configs[
            "pp_allreduce_in_optimize"]
106 107 108 109

        if self.inner_opt is None:
            raise ValueError(
                "self.inner_opt of ShardingOptimizer should not be None.")
L
lilong12 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
        if self.use_pipeline:
            pp_optimizer = fluid.optimizer.PipelineOptimizer(self.inner_opt,
                                                             self.acc_steps)
            main_program = loss.block.program
            main_program._pipeline_opt = dict()
            main_program._pipeline_opt['schedule_mode'] = self.schedule_mode
            main_program._pipeline_opt['pp_bz'] = self.pp_bz
            pp_rank = self.role_maker._worker_index() // (
                self.user_defined_strategy.sharding_configs[
                    'sharding_group_size'] * self._inner_parallelism_size)
            main_program._pipeline_opt['local_rank'] = pp_rank
            main_program._pipeline_opt[
                'global_rank'] = self.role_maker._worker_index()
            main_program._pipeline_opt['use_sharding'] = True
            main_program._pipeline_opt['ring_id'] = 20
            optimize_ops, params_grads, program_list, self.pipeline_pair, self.pp_ring_map = pp_optimizer.minimize(
                loss, startup_program, parameter_list, no_grad_set)
            self.pipeline_nodes = len(program_list)
        else:
            optimize_ops, params_grads = self.inner_opt.minimize(
                loss, startup_program, parameter_list, no_grad_set)
131 132 133

        if startup_program is None:
            startup_program = default_startup_program()
L
lilong12 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
        if self.use_pipeline:
            startup_program = startup_program._pipeline_opt['startup_program']
            #main_program = main_program._pipeline_opt['section_program']['program']
            print("pp_rank:", pp_rank)
            main_program = program_list[pp_rank]['program']
            with open("main_%d" % self.role_maker._worker_index(), 'w') as f:
                f.writelines(str(main_program))
            main_block = main_program.global_block()
            new_params_grads = []
            for param, grad in params_grads:
                if main_block.has_var(param.name):
                    new_params_grads.append((param, grad))
            params_grads = new_params_grads

        else:
            main_block = loss.block
150 151 152 153
        startup_block = startup_program.global_block()
        self._main_program = main_block.program
        self._startup_program = startup_program

L
lilong12 已提交
154 155 156 157 158
        if self.use_pipeline:
            pp_optimizer._rename_gradient_var_name(main_block)
            with open("main_%d" % self.role_maker._worker_index(), 'w') as f:
                f.writelines(str(main_program))

159 160 161 162 163 164 165 166 167 168 169 170
        # step1: set_up
        self._set_up(params_grads)

        # step2: split_program
        self._split_program(main_block)

        # step3: add broadcast and reduce ops
        self._add_broadcast_allreduce(main_block)
        main_block._sync_with_cpp()
        startup_block._sync_with_cpp()

        # step4: insert reduce_sum for grad
L
lilong12 已提交
171 172 173 174 175 176 177
        # grad_scale_coeff = self.role_maker._worker_num()
        # if self._as_outer_parallelism:
        #     grad_scale_coeff = grad_scale_coeff / self._inner_parallelism_size
        # insert_scale_loss_grad_ops(main_block, scale=1.0 / grad_scale_coeff)
        sharding_group_size = self.user_defined_strategy.sharding_configs[
            'sharding_group_size']
        insert_scale_loss_grad_ops(main_block, scale=1.0 / sharding_group_size)
178 179 180 181 182
        main_block._sync_with_cpp()

        # step5: remove unneeded ops and vars from block
        self._prune_main_program(main_block)
        self._prune_startup_program(startup_block)
L
lilong12 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
        if self.hybrid_dp:
            self._initialization_broadcast(startup_program)

        if self.use_pipeline:
            # pp_optimizer._rename_gradient_var_name(main_block)
            # crop ops
            for idx, op in reversed(list(enumerate(main_block.ops))):
                if is_update_op(op):
                    op_role_var = op.attr('op_role_var')
                    param_name = op_role_var[0]
                    if not self._shard.has_param(param_name):
                        main_block._remove_op(idx)

            for idx, op in reversed(list(enumerate(main_block.ops))):
                if op.type != 'cast': continue
                in_name = op.input_arg_names[0]
                if in_name not in self._params: continue
                #if self._shard.has_param(param_name): continue
                if in_name not in main_block.vars:
                    main_block._remove_op(idx)
            accumulated_grad_names = pp_optimizer._accumulate_gradients(
                main_block)
            # accumulated_grad_names = sorted(accumulated_grad_names)
            if self.pp_allreduce_in_optimize:
                print("persistable FP32 grad: ")
                print(accumulated_grad_names)
                first_optimize_op_index = get_first_check_finite_and_unscale_op_idx(
                    main_block)
                insert_reduce_ops(
                    main_block,
                    first_optimize_op_index,
                    self.sharding_ring_id,
                    accumulated_grad_names,
                    self._shard,
                    core.op_proto_and_checker_maker.OpRole.Optimize,
                    use_calc_stream=True)

        main_block._sync_with_cpp()

        # TODO(wangxi): add optimize offload
        if self.optimize_offload:
            logging.info("Sharding with optimize offload !")
            offload_helper = OffloadHelper()
            offload_helper.offload(main_block, startup_block)
            offload_helper.offload_fp32param(main_block, startup_block)

        with open("start_sharding_%d" % self.role_maker._worker_index(),
                  'w') as f:
            f.writelines(str(startup_block.program))
        with open("main_sharding_%d" % self.role_maker._worker_index(),
                  'w') as f:
            f.writelines(str(main_block.program))
235 236 237

        # check op dependecy
        check_broadcast(main_block)
L
lilong12 已提交
238 239 240
        #check_allreduce_sum(main_block, self._shard, self.sharding_ring_id,
        #                    self.dp_ring_id)
        #check_allreduce_sum(main_block, self._shard, self.dp_ring_id)
241 242 243 244 245
        self._wait()
        return optimize_ops, params_grads

    def _set_up(self, params_grads):
        # step 1: initialize nccl
246 247 248 249
        self.global_word_size = self.role_maker._worker_num()
        self.global_rank = self.role_maker._worker_index()
        self.endpoints = self.role_maker._get_trainer_endpoints()
        self.current_endpoint = self.endpoints[self.global_rank]
250
        self._collective_helper = CollectiveHelper(self.role_maker,
251 252 253
                                                   self._nrings_sharding)
        # config sharding & dp groups
        self._init_comm()
L
lilong12 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272

        # global
        if self._as_outer_parallelism:
            print("global_group_endpoints:", self.global_group_endpoints)
            print("global_rank:", self.global_rank)
            print("global_ring_id:", self.global_group_id)
            self._collective_helper._init_communicator(
                self._startup_program, self.current_endpoint,
                self.global_group_endpoints, self.global_rank,
                self.global_group_id, False)

        if self._as_outer_parallelism:
            print("mp_group_endpoints:", self.mp_group_endpoints)
            print("mp_rank:", self.mp_rank)
            print("mp_ring_id:", self.mp_group_id)
            self._collective_helper._init_communicator(
                self._startup_program, self.current_endpoint,
                self.mp_group_endpoints, self.mp_rank, self.mp_group_id, False)

273
        # sharding
L
lilong12 已提交
274 275 276
        print("sharding_group_endpoints:", self.sharding_group_endpoints)
        print("sharding_rank:", self.sharding_rank)
        print("sharding_ring_id:", self.sharding_ring_id)
277 278 279
        self._collective_helper._init_communicator(
            self._startup_program, self.current_endpoint,
            self.sharding_group_endpoints, self.sharding_rank,
L
lilong12 已提交
280 281
            self.sharding_ring_id, False)

282 283
        # dp
        if self.hybrid_dp:
284
            self._collective_helper._init_communicator(
285
                self._startup_program, self.current_endpoint,
L
lilong12 已提交
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
                self.dp_group_endpoints, self.dp_rank, self.dp_ring_id, False)
        # pp
        if self.use_pipeline:
            print("pp_group_endpoints:", self.pp_group_endpoints)
            print("pp_rank:", self.pp_rank)
            print("pp_ring_id:", self.pp_ring_id)
            if self.schedule_mode == 0:  # GPipe
                self._collective_helper._init_communicator(
                    self._startup_program, self.current_endpoint,
                    self.pp_group_endpoints, self.pp_rank, self.pp_ring_id,
                    False)
                self._collective_helper._init_communicator(
                    self._startup_program, self.current_endpoint,
                    self.pp_group_endpoints, self.pp_rank, self.pp_ring_id + 2,
                    False)
            else:
                for pair in self.pipeline_pair:
                    pair_key = pair[0] * 1000 + pair[1]
                    ring_id = self.pp_ring_map[pair_key]
                    print("pp pair:{}, ring_id: {}".format(pair, ring_id))
                    if self.pp_rank not in pair: continue
                    pp_group_endpoints = [
                        self.pp_group_endpoints[pair[0]],
                        self.pp_group_endpoints[pair[1]],
                    ]
                    if pair[0] < pair[1]:
                        start_ring_id = self.pp_ring_id + pair[1] - pair[0] - 1
                    else:
                        start_ring_id = self.pp_ring_id + 2 + pair[0] - pair[
                            1] - 1
                    pp_rank = 0 if self.pp_rank == pair[0] else 1
                    self._collective_helper._init_communicator(
                        self._startup_program, self.current_endpoint,
                        pp_group_endpoints, pp_rank, ring_id, False, False)
320

321 322 323 324 325
        startup_block = self._startup_program.global_block()
        startup_block._sync_with_cpp()

        # step 2: split params
        self._params = set([x[0].name for x in params_grads])
326 327
        self._shard.setup(params_grads, self.sharding_rank,
                          self.sharding_group_size)
328 329 330 331 332 333

        # step 3: get broadcast vars
        self._broadcast_vars = self._shard.find_broadcast_params(
            self._main_program.global_block())

    def _wait(self, ):
L
lilong12 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
        # only the first parallelsm group that init nccl need to be wait. 
        if self._as_outer_parallelism:
            endpoints = self.role_maker._get_trainer_endpoints()
            current_endpoint = endpoints[self.role_maker._worker_index()]
        else:
            endpoints = self.sharding_group_endpoints[:]
            current_endpoint = self.sharding_group_endpoints[self.sharding_rank]

        if self._as_outer_parallelism:
            if self.role_maker._worker_index() == 0:
                self._collective_helper._wait(current_endpoint, endpoints)
        else:
            if self.sharding_rank == 0:
                self._collective_helper._wait(current_endpoint, endpoints)

    # def _wait(self, ):
    #     # only the first parallelsm group that init nccl need to be wait. 
    #     if self._as_outer_parallelism:
    #         endpoints = self.role_maker._get_trainer_endpoints()
    #     else:
    #         endpoints = self.sharding_group_endpoints[:]
    #     current_endpoint = endpoints[self.role_maker._worker_index()]

    #     if self._as_outer_parallelism:
    #         if self.role_maker._worker_index() == 0:
    #             self._collective_helper._wait(current_endpoint, endpoints)
    #     else:
    #         if self.sharding_rank == 0:
    #             self._collective_helper._wait(current_endpoint, endpoints)
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402

    def _split_program(self, block):
        for op_idx, op in reversed(list(enumerate(block.ops))):
            if int(op.attr('op_role')) != int(OpRole.Optimize):
                last_backward_op_idx = op_idx + 1
                break
        segment = ProgramSegment(block)
        segment._end_idx = last_backward_op_idx
        for op_idx in reversed(range(last_backward_op_idx)):
            op = block.ops[op_idx]
            assert (int(op.attr('op_role')) != int(OpRole.Optimize))
            if segment._param_mem >= self._fuse_broadcast_MB:
                segment._start_idx = op_idx + 1
                self._segments.insert(0, segment)
                segment = ProgramSegment(block)
                segment._end_idx = op_idx + 1

            # find broadcast vars
            for input_name in op.desc.input_arg_names():
                if input_name not in self._broadcast_vars:
                    continue
                if input_name in segment._param2broadcast:
                    # skip broadcast because it reuse the old broadcast var
                    broadcast_name = segment._param2broadcast[input_name]
                    if input_name != broadcast_name:
                        op._rename_input(input_name, broadcast_name)
                    continue
                if self._shard.has_param(input_name):
                    broadcast_var_name = input_name
                else:
                    broadcast_var_name = unique_name.generate(input_name +
                                                              "@BroadCast")
                    segment._fill_constant_vars.append(broadcast_var_name)
                segment._param2broadcast[input_name] = broadcast_var_name
                segment._broadcast_vars.append((broadcast_var_name,
                                                self._shard.device(input_name)))
                segment._param_mem += get_var_size(
                    self._main_program.global_block().var(input_name))

            # find reduce vars
L
lilong12 已提交
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
            if self.use_pipeline and self.pp_allreduce_in_optimize:
                # place pipeline gradient allreduce in optimize
                pass
            else:
                if is_backward_op(op) and \
                        OP_ROLE_VAR_KEY in op.attr_names:
                    op_role_var = op.all_attrs()[OP_ROLE_VAR_KEY]
                    if len(op_role_var) != 0:
                        assert len(op_role_var) % 2 == 0
                        for i in range(0, len(op_role_var), 2):
                            param, reduced_grad = op_role_var[i], op_role_var[
                                i + 1]
                            segment._allreduce_vars.append(reduced_grad)
                            #assert (
                            #    reduced_grad not in self._reduced_grads_to_param)
                            self._reduced_grads_to_param[reduced_grad] = param
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435

            # find cast op
            if FP16Utils.is_fp16_cast_op(block, op, self._params):
                fp32_param = op.desc.input_arg_names()[0]
                fp16_param = op.desc.output_arg_names()[0]
                if self._shard.has_param(fp32_param):
                    segment._cast_ops[fp16_param] = fp32_param

        if segment._param_mem > 0:
            segment._start_idx = 0
            self._segments.insert(0, segment)
        return

    def _prune_main_program(self, block):
        """
        calculate deps from allredce op to optimize op,
        remove ops and vars not needed in this worker
436 437 438 439 440 441

        1. prune regularization (weight decay)
        2. prune cast_fp32_to_fp16; update amp_infine_checking
        3. prune gradient_clip related; update global_norm_sum
        4. prune optimizer op + param + gradient
            
442 443 444
        """
        weightdecay_helper = WeightDecayHelper()
        weightdecay_helper.prune_weight_decay(block, self._shard)
L
lilong12 已提交
445 446 447 448 449
        # NOTE (JZ-LIANG) the sync of FoundInfinite should among one entire Model Parallelism
        # group. and each Data Parallelism group should have its own sync of FoundInfinite
        Model_Paramllelism_ring_id = self.sharding_ring_id
        if self._as_outer_parallelism:
            Model_Paramllelism_ring_id = self.global_group_id
450
        FP16Utils.prune_fp16(block, self._shard, self._reduced_grads_to_param,
L
lilong12 已提交
451 452
                             Model_Paramllelism_ring_id)
        gradientclip_helper = GradientClipHelper(Model_Paramllelism_ring_id)
453 454 455 456 457 458 459 460 461 462 463 464
        gradientclip_helper.prune_gradient_clip(block, self._shard)

        # build prog deps
        reduced_grads = []
        for idx, op in enumerate(block.ops):
            input_names = op.desc.input_arg_names()
            output_names = op.desc.output_arg_names()
            if op.type == "c_allreduce_sum":
                assert (len(output_names) == 1)
                output_name = output_names[0]
                reduced_grads.append(output_name)

465
        # prune optimizer state and param
466 467 468 469 470 471 472 473 474 475 476 477 478 479
        pruned_opti_vars = []
        for var_name in list(block.vars.keys()):
            if self._shard.is_opti_var(var_name) and \
              not self._shard.has_opt_var(var_name):
                pruned_opti_vars.append(var_name)
        program_deps = ProgramDeps(block, reduced_grads, pruned_opti_vars)

        # Init
        for var_name in program_deps._end_vars:
            program_deps._should_removed_var.add(var_name)

        # Prune
        for idx, op in reversed(list(enumerate(block.ops))):
            if op.type in [
L
lilong12 已提交
480 481 482 483 484 485 486
                    "c_allreduce_sum",
                    "c_sync_comm_stream",
                    "c_calc_comm_stream",
                    "c_gen_nccl_id",
                    "c_comm_init",
                    'send_v2',
                    'recv_v2',
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
            ]:
                pass
            elif op.type == "conditional_block":
                assert (op.desc.has_attr("sub_block"))
                subblock_idx = op.desc.attr("sub_block").id
                subblock_deps = program_deps.get_sub_block_deps(subblock_idx)
                # only prune amp subblock
                if subblock_deps is None or not self._is_amp_subblock(op):
                    continue
                # init
                reversed_output_vars = []
                for output_name in op.desc.output("Out"):
                    if output_name in program_deps._should_removed_var:
                        subblock_deps._should_removed_var.add(output_name)
                        program_deps.crop_output_var_from_op(idx, output_name)
                    else:
                        reversed_output_vars.append(output_name)
                # prune
                for sub_op_idx, _ in reversed(
                        list(enumerate(subblock_deps._block.ops))):
                    if subblock_deps.should_remove_op(sub_op_idx):
                        subblock_deps.remove_op(sub_op_idx)
                reversed_input_vars = []
                for input_name in op.desc.input('Input'):
                    if input_name not in subblock_deps._should_removed_var:
                        reversed_input_vars.append(input_name)
                    else:
                        program_deps.crop_input_var_from_op(idx, input_name)
                op.desc.set_input('Input', reversed_input_vars)
                op.desc.set_output('Out', reversed_output_vars)
            else:
518 519
                # if all outputs of this op are in _should_removed_var
                # _should_removed_var: opt state not cur shard
520 521 522 523
                if program_deps.should_remove_op(idx):
                    program_deps.remove_op(idx)

        block._sync_with_cpp()
L
lilong12 已提交
524 525 526 527 528 529 530 531
        for idx, op in reversed(list(enumerate(block.ops))):
            if op.type == 'concat' and is_optimizer_op(op):
                # remove inputs that not on this card
                reserved_x = []
                for var_name in op.desc.input("X"):
                    if block.has_var(var_name): reserved_x.append(var_name)
                op.desc.set_input('X', reserved_x)
        block._sync_with_cpp()
532 533 534 535 536
        return

    def _add_broadcast_allreduce(self, block):
        """
        _add_broadcast_allreduce
L
lilong12 已提交
537 538 539

        if combined with pipeline(grad accumulate), 
        the grad allreduce should be done in optimize role
540 541 542
        """
        if len(self._segments) < 1:
            return
543
        # sharding
L
lilong12 已提交
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
        if self.use_pipeline and self.pp_allreduce_in_optimize:
            for idx in range(len(self._segments)):
                assert len(self._segments[idx]._allreduce_vars) == 0

        # fix the _end_idx for segments[-1] if pp is used.
        new_end_idx = self._segments[-1]._end_idx
        for idx in range(self._segments[-1]._end_idx - 1,
                         self._segments[-1]._start_idx - 1, -1):
            op = block.ops[idx]
            if op.type == "fill_constant" or op.type == "sum":
                if "MERGED" in op.output_arg_names[0]: new_end_idx = idx + 1
            elif op.type == "cast":
                if "@TMP" in op.output_arg_names[0]: new_end_idx = idx + 1
        self._segments[-1]._end_idx = new_end_idx

559
        if self._segments[-1]._allreduce_vars:
560 561 562 563 564 565 566
            shard_allredue_vars = self._shard.filter_grads(self._segments[-1]
                                                           ._allreduce_vars)
            if self.hybrid_dp and len(shard_allredue_vars) >= 1:
                insert_sync_comm_ops(block, self._segments[-1]._end_idx,
                                     self.dp_ring_id, shard_allredue_vars)
                insert_allreduce_ops(block, self._segments[-1]._end_idx,
                                     self.dp_ring_id, shard_allredue_vars)
567
            insert_sync_comm_ops(block, self._segments[-1]._end_idx,
568
                                 self.sharding_ring_id,
569
                                 self._segments[-1]._allreduce_vars)
L
lilong12 已提交
570 571 572 573 574 575 576 577 578
            # allreduce --> reduce
            insert_reduce_ops(
                block,
                self._segments[-1]._end_idx,
                self.sharding_ring_id,
                self._segments[-1]._allreduce_vars,
                self._shard,
                op_role=OpRole.Backward,
                use_calc_stream=False)
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615

        for idx, segment in reversed(list(enumerate(self._segments))):
            allreduce_vars = self._segments[
                idx - 1]._allreduce_vars if idx > 0 else []
            broadcast_vars = self._segments[idx +
                                            1]._broadcast_vars if idx < len(
                                                self._segments) - 1 else []
            fill_constant_vars = self._segments[
                idx + 2]._fill_constant_vars if idx < len(
                    self._segments) - 2 else []
            cast_ops = self._segments[idx + 2]._cast_ops if idx < len(
                self._segments) - 2 else {}

            for op_idx in reversed(range(segment._start_idx, segment._end_idx)):
                op = block.ops[op_idx]
                for input_name in op.desc.input_arg_names():
                    if input_name in segment._param2broadcast and \
                        input_name != segment._param2broadcast[input_name]:
                        op._rename_input(input_name,
                                         segment._param2broadcast[input_name])

            for param_name, broadcast_name in segment._param2broadcast.items():
                if param_name != broadcast_name:
                    block.create_var(
                        name=broadcast_name,
                        shape=self._main_program.global_block().var(
                            param_name).shape,
                        dtype=self._main_program.global_block().var(param_name)
                        .dtype,
                        persistable=False)

            # step1: remove cast ops
            block._sync_with_cpp()
            segment._end_idx += FP16Utils.remove_cast_op(block, self._params,
                                                         segment, 0)

            # step2: add Sync ops
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
            shard_allredue_vars = self._shard.filter_grads(allreduce_vars)
            if self.hybrid_dp and len(shard_allredue_vars) >= 1:
                insert_sync_comm_ops(block, segment._end_idx, self.dp_ring_id,
                                     shard_allredue_vars)

                broad_cast_vars = [x[0] for x in broadcast_vars]
                if len(broad_cast_vars) > 0:
                    insert_sync_comm_ops(block, segment._end_idx,
                                         self.sharding_ring_id, broad_cast_vars)
            else:
                comm_dep_vars = allreduce_vars + [x[0] for x in broadcast_vars]
                if len(comm_dep_vars) > 0:
                    insert_sync_comm_ops(block, segment._end_idx,
                                         self.sharding_ring_id, comm_dep_vars)

631 632 633 634 635 636 637 638 639 640 641 642 643
            calc_dep_vars = fill_constant_vars + [
                k for k, v in cast_ops.items()
            ] + self._segments[idx]._allreduce_vars

            if len(calc_dep_vars) > 0:
                insert_sync_calc_op(block, segment._end_idx,
                                    [calc_dep_vars[-1]])

            # step3: insert `fill_constant` ops 
            insert_fill_constant_ops(block, segment._end_idx,
                                     fill_constant_vars)

            # step4: add `cast` ops     
L
lilong12 已提交
644
            print("cast_ops:", cast_ops)
645 646 647
            insert_cast_ops(block, segment._end_idx, cast_ops)

            # step5: add broadcast ops
648 649
            insert_broadcast_ops(block, segment._start_idx,
                                 self.sharding_ring_id, broadcast_vars)
650
            # step6: add all_reduce ops
651 652 653 654 655 656 657
            # dp
            if self.hybrid_dp and len(shard_allredue_vars) >= 1:
                insert_allreduce_ops(block, segment._start_idx, self.dp_ring_id,
                                     shard_allredue_vars)
                insert_sync_comm_ops(block, segment._start_idx,
                                     self.sharding_ring_id, allreduce_vars)
            # sharding
L
lilong12 已提交
658 659 660 661 662 663 664 665 666
            # allreduce --> reduce
            insert_reduce_ops(
                block,
                segment._start_idx,
                self.sharding_ring_id,
                allreduce_vars,
                self._shard,
                op_role=OpRole.Backward,
                use_calc_stream=False)
667 668 669 670

            block._sync_with_cpp()

        if self._segments[0]._broadcast_vars:
671 672 673
            broadcast_vars = [x[0] for x in self._segments[0]._broadcast_vars]
            insert_sync_comm_ops(block, self._segments[0]._start_idx,
                                 self.sharding_ring_id, broadcast_vars)
674
            insert_broadcast_ops(block, self._segments[0]._start_idx,
675
                                 self.sharding_ring_id,
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
                                 self._segments[0]._broadcast_vars)

        fill_constant_vars = []
        for x in self._segments[:2]:
            fill_constant_vars += x._fill_constant_vars

        # Join
        cast_ops = {}
        for x in self._segments[:2]:
            for k, v in x._cast_ops.items():
                cast_ops[k] = v

        calc_deps_vars = fill_constant_vars + [k for k, v in cast_ops.items()]
        if fill_constant_vars or cast_ops:
            insert_sync_calc_op(block, self._segments[0]._start_idx,
                                [calc_deps_vars[-1]])

        if fill_constant_vars:
            insert_fill_constant_ops(block, self._segments[0]._start_idx,
                                     fill_constant_vars)

        if cast_ops:
            insert_cast_ops(block, self._segments[0]._start_idx, cast_ops)

        return

    def _prune_startup_program(self, block):
        for idx, op in reversed(list(enumerate(block.ops))):
            for output_name in op.desc.output_arg_names():
                if self._shard.has_var(output_name):
                    continue
                #TODO why do we remove op, when only one var is removed
                block._remove_op(idx, sync=False)
                break

        for var_name in list(block.vars.keys()):
            if self._shard.has_var(var_name):
                continue
            block._remove_var(var_name, sync=False)
        block._sync_with_cpp()
716 717 718 719

    def _init_comm(self):

        if self.hybrid_dp:
L
lilong12 已提交
720
            assert self._as_outer_parallelism == False, "hybrid dp is conflict when using sharding as outer parallelism"
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
            self.sharding_group_size = self.user_defined_strategy.sharding_configs[
                "sharding_group_size"]
            self.sharding_ring_id = 0
            self.sharding_rank = self.global_rank % self.sharding_group_size

            self.dp_group_size = self.global_word_size // self.sharding_group_size
            self.dp_rank = self.global_rank // self.sharding_group_size
            self.dp_ring_id = self.sharding_rank + 1

            self.sharding_group_endpoints = [
                ep for idx, ep in enumerate(self.endpoints)
                if (idx // self.sharding_group_size) == self.dp_rank
            ]
            self.dp_group_endpoints = [
                ep for idx, ep in enumerate(self.endpoints)
                if (idx % self.sharding_group_size) == self.sharding_rank
            ]
L
lilong12 已提交
738

739 740 741 742 743 744 745 746 747
            assert self.global_word_size > self.sharding_group_size, \
                "global_word_size: {} should be larger than sharding_group_size: {}".format(self.global_word_size, self.sharding_group_size)
            assert self.global_word_size % self.sharding_group_size == 0, \
                "global_word_size: {} should be divisible to the sharding_group_size: {}".format(self.global_word_size, self.sharding_group_size)
            assert self.dp_group_size *  self.sharding_group_size == self.global_word_size, \
                "global_word_size: {} should be equal to the product of sharding_group_size: {} and dp_group_size: {}".format(
                self.global_word_size,
                self.sharding_group_size,
                self.dp_group_size)
L
lilong12 已提交
748 749 750 751 752 753 754 755 756 757
            self.pp_ring_id = -1
            self.pp_rank = -1
            self.pp_group_size = None
            self.pp_group_endpoints = None

            # sharding parallelism is the only model parallelism in the current setting
            self.mp_group_id = self.sharding_ring_id
            self.mp_rank = self.sharding_rank
            self.mp_group_size = self.sharding_group_size
            self.mp_group_endpoints = self.sharding_group_endpoints[:]
758 759 760

            logging.info("Using Sharing&DP mode !")
        else:
L
lilong12 已提交
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
            if self._as_outer_parallelism and not self.use_pipeline:
                self.sharding_ring_id = 1
                assert self.global_word_size > self._inner_parallelism_size, \
                    "global_word_size: {} should be larger than inner_parallelism_size: {}".format(self.global_word_size, self._inner_parallelism_size)
                assert self.global_word_size % self._inner_parallelism_size == 0, \
                    "global_word_size: {} should be divisible to the inner_parallelism_size: {}".format(self.global_word_size, self._inner_parallelism_size)
                self.sharding_rank = self.global_rank // self._inner_parallelism_size
                self.sharding_group_size = self.role_maker._worker_num(
                ) // self._inner_parallelism_size
                _offset = self.global_rank % self._inner_parallelism_size
                self.sharding_group_endpoints = [
                    ep for idx, ep in enumerate(self.endpoints)
                    if idx % self._inner_parallelism_size == _offset
                ]

                # the current entire model parallelism group is the combination of innert & sharding parallelism
                self.mp_group_id = 2
                self.mp_rank = self.global_rank
                self.mp_group_size = self.role_maker._worker_num()
                self.mp_group_endpoints = self.endpoints[:]
                logging.info("Using Sharing as Outer parallelism mode !")

                # print(
                #     "init the nccl comm for megatron paramllelism, this should be done in Megatron Metaoptimizer"
                # )
                # partition_idx = self.global_rank // self._inner_parallelism_size
                # magetron_endpoints = self.endpoints[
                #     partition_idx * self._inner_parallelism_size:partition_idx *
                #     self._inner_parallelism_size + self._inner_parallelism_size]
                # magetron_rank = self.global_rank % self._inner_parallelism_size

                # self._collective_helper._init_communicator(
                #     program=self._startup_program,
                #     current_endpoint=self.current_endpoint,
                #     endpoints=magetron_endpoints,
                #     rank=magetron_rank,
                #     ring_id=0,
                #     wait_port=True)
                # logging.info("megatron group size: {}".format(
                #     self._inner_parallelism_size))
                # logging.info("megatron rank: {}".format(magetron_rank))
                # logging.info("megatron endpoints: {}".format(
                #     magetron_endpoints))
            if self.use_pipeline:
                if self._inner_parallelism_size == 1:
                    self.sharding_ring_id = 0
                    self.sharding_group_size = self.user_defined_strategy.sharding_configs[
                        'sharding_group_size']
                    self.sharding_rank = self.global_rank % self.sharding_group_size
                    assert self.sharding_group_size * self.pipeline_nodes * self._inner_parallelism_size == self.role_maker._worker_num(
                    )
                    self.pp_ring_id = 20
                    self.pp_rank = self.global_rank // (
                        self.sharding_group_size * self._inner_parallelism_size)
                    self.sharding_group_endpoints = [
                        ep for idx, ep in enumerate(self.endpoints)
                        if (idx // self.sharding_group_size) == self.pp_rank
                    ]
                    self.pp_group_size = self.pipeline_nodes
                    self.pp_group_endpoints = [
                        ep for idx, ep in enumerate(self.endpoints)
                        if (idx % self.sharding_group_size
                            ) == self.sharding_rank
                    ]
                else:
                    self.mp_group_id = 0
                    self.sharding_ring_id = 1
                    self.pp_ring_id = 20
                    self.mp_rank = self.global_rank % self._inner_parallelism_size
                    self.mp_group = self.global_rank // self._inner_parallelism_size
                    self.mp_group_endpoints = [
                        ep for idx, ep in enumerate(self.endpoints)
                        if idx // self._inner_parallelism_size == self.mp_group
                    ]
                    print("megatron_group_endpoints:", self.mp_group_endpoints)
                    print("megatron_rank:", self.mp_rank)
                    # self.cards_per_node = 8
                    self.sharding_group_size = self.user_defined_strategy.sharding_configs[
                        'sharding_group_size']
                    self.sharding_rank = (
                        self.global_rank //
                        self._inner_parallelism_size) % self.sharding_group_size
                    self.sharding_group_id = self.global_rank // (
                        self._inner_parallelism_size * self.sharding_group_size)
                    self.megatron_rank = self.global_rank % self._inner_parallelism_size
                    self.sharding_group_endpoints = [
                        ep for idx, ep in enumerate(self.endpoints)
                        if (idx // (self._inner_parallelism_size *
                                    self.sharding_group_size)
                            ) == self.sharding_group_id and idx %
                        self._inner_parallelism_size == self.megatron_rank
                    ]
                    print("sharding_endpoint:", self.sharding_group_endpoints)
                    print("sharding_rank:", self.sharding_rank)
                    assert self.sharding_group_size * self.pipeline_nodes * self._inner_parallelism_size == self.role_maker._worker_num(
                    )
                    self.pp_rank = self.global_rank // (
                        self.sharding_group_size *
                        self._inner_parallelism_size) % self.pipeline_nodes
                    offset = self.sharding_group_size * self._inner_parallelism_size
                    # TODO: Adjust for dp
                    idx_with_pp_0 = self.global_rank % (
                        self.sharding_group_size * self._inner_parallelism_size)
                    self.pp_group_endpoints = []
                    for i in range(self.pipeline_nodes):
                        self.pp_group_endpoints.append(self.endpoints[
                            idx_with_pp_0])
                        idx_with_pp_0 += offset
                    print("pp_group_endpoints:", self.pp_group_endpoints)
                    print("pp_rank:", self.pp_rank)

                    #self.pp_group_endpoints = [
                    #    ep for idx, ep in enumerate(self.endpoints)
                    #    if (idx % self.sharding_group_size) == self.sharding_rank
                    #]
                self.global_group_id = 3
                self.global_rank = self.global_rank
                self.global_group_size = self.role_maker._worker_num()
                self.global_group_endpoints = self.endpoints[:]
                logging.info("Using Sharing as Outer parallelism mode !")
                self.dp_ring_id = -1
                self.dp_rank = -1
                self.dp_group_size = None
                self.dp_group_endpoints = None

                logging.info("Using Sharing with pipeline !")
            #else:
            #    self.sharding_ring_id = 0
            #    self.sharding_rank = self.global_rank
            #    self.sharding_group_size = self.role_maker._worker_num()
            #    self.sharding_group_endpoints = self.endpoints

            #    # sharding parallelism is the only model parallelism in the current setting
            #    self.mp_group_id = self.sharding_ring_id
            #    self.mp_rank = self.sharding_rank
            #    self.mp_group_size = self.sharding_group_size
            #    self.mp_group_endpoints = self.sharding_group_endpoints[:]

            #    logging.info("Using Sharing alone mode !")

901 902 903 904 905
            self.dp_ring_id = -1
            self.dp_rank = -1
            self.dp_group_size = None
            self.dp_group_endpoints = None

L
lilong12 已提交
906 907 908 909 910 911 912 913 914
            #self.pp_ring_id = -1
            #self.pp_rank = -1
            #self.pp_group_size = None
            #self.pp_group_endpoints = None
            #self.dp_ring_id = -1
            #self.dp_rank = -1
            #self.dp_group_size = None
            #self.dp_group_endpoints = None

915 916
            logging.info("Using Sharing alone mode !")

L
lilong12 已提交
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
        #logging.info("global word size: {}".format(self.global_word_size))
        #logging.info("global rank: {}".format(self.global_rank))
        #logging.info("sharding group_size: {}".format(self.sharding_group_size))
        #logging.info("sharding rank: {}".format(self.sharding_rank))
        #logging.info("current model parallelism group_size: {}".format(
        #    self.mp_group_size))
        #logging.info("current model parallelism rank: {}".format(self.mp_rank))
        #logging.info("dp group size: {}".format(self.dp_group_size))
        #logging.info("dp rank: {}".format(self.dp_rank))
        #logging.info("current endpoint: {}".format(self.current_endpoint))
        #logging.info("global word endpoints: {}".format(self.endpoints))
        #logging.info("sharding group endpoints: {}".format(
        #    self.sharding_group_endpoints))
        #logging.info("current model parallelism group endpoints: {}".format(
        #    self.mp_group_endpoints))
        #logging.info("dp group endpoints: {}".format(self.dp_group_endpoints))
933 934

        return
L
lilong12 已提交
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959

    def _initialization_broadcast(self, startup_prog):
        """
        this funtion is to ensure the initialization between dp group to be 
        identical when hybrid-dp is used.
        """
        block = startup_prog.global_block()
        params = []
        for param in block.iter_parameters():
            params.append(param)
            block.append_op(
                type='c_broadcast',
                inputs={'X': param},
                outputs={'Out': param},
                attrs={
                    'ring_id': self.dp_ring_id,
                    'root': 0,
                    OP_ROLE_KEY: OpRole.Forward
                })
        block.append_op(
            type='c_sync_comm_stream',
            inputs={'X': params},
            outputs={'Out': params},
            attrs={'ring_id': self.dp_ring_id,
                   OP_ROLE_KEY: OpRole.Forward})