gpu_info.cc 11.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
liaogang 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/platform/gpu_info.h"
16
#include <algorithm>
S
sneaxiy 已提交
17 18
#include <cstdlib>
#include <string>
L
liaogang 已提交
19

20
#include "gflags/gflags.h"
Y
Yi Wang 已提交
21
#include "paddle/fluid/platform/enforce.h"
22
#include "paddle/fluid/string/split.h"
L
liaogang 已提交
23

24
#ifndef _WIN32
P
peizhilin 已提交
25
constexpr static float fraction_of_gpu_memory_to_use = 0.92f;
26
#else
P
peizhilin 已提交
27 28 29
// fraction_of_gpu_memory_to_use cannot be too high on windows,
// since the win32 graphic sub-system can occupy some GPU memory
// which may lead to insufficient memory left for paddle
P
peizhilin 已提交
30
constexpr static float fraction_of_gpu_memory_to_use = 0.5f;
31 32
#endif

Z
zhhsplendid 已提交
33 34
constexpr static float fraction_reserve_gpu_memory = 0.05f;

35
DEFINE_double(fraction_of_gpu_memory_to_use, fraction_of_gpu_memory_to_use,
X
Xin Pan 已提交
36 37 38 39 40
              "Allocate a trunk of gpu memory that is this fraction of the "
              "total gpu memory size. Future memory usage will be allocated "
              "from the trunk. If the trunk doesn't have enough gpu memory, "
              "additional trunks of the same size will be requested from gpu "
              "until the gpu has no memory left for another trunk.");
L
liaogang 已提交
41

Z
zhhsplendid 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
DEFINE_uint64(gpu_init_memory_in_mb, 0ul,
              "Allocate a trunk of gpu memory whose byte size is specified by "
              "the flag. Future memory usage will be allocated from the "
              "truck. If the trunk doesn't have enough gpu memory, additional "
              "trunks of the gpu memory will be requested from gpu with size "
              "speified by FLAGS_gpu_reallocate_memory_in_mb until the gpu has "
              "no memory left for the additional trunk. Note: if you set this "
              "flag, the memory size set by "
              "FLAGS_fraction_of_gpu_memory_to_use will be overrided by this "
              "flag. If you don't set this flag, PaddlePaddle will use "
              "FLAGS_fraction_of_gpu_memory_to_use to allocate gpu memory");

DEFINE_uint64(gpu_reallocate_memory_in_mb, 0ul,
              "If this flag is set, Paddle will reallocate the gpu memory with "
              "size specified by this flag. Else Paddle will reallocate by "
              "FLAGS_fraction_of_gpu_memory_to_use");

59 60 61 62 63 64 65 66 67 68
DEFINE_bool(
    enable_cublas_tensor_op_math, false,
    "The enable_cublas_tensor_op_math indicate whether to use Tensor Core, "
    "but it may loss precision. Currently, There are two CUDA libraries that"
    " use Tensor Cores, cuBLAS and cuDNN. cuBLAS uses Tensor Cores to speed up"
    " GEMM computations(the matrices must be either half precision or single "
    "precision); cuDNN uses Tensor Cores to speed up both convolutions(the "
    "input and output must be half precision) and recurrent neural networks "
    "(RNNs).");

69 70 71 72 73 74 75 76 77
DEFINE_string(selected_gpus, "",
              "A list of device ids separated by comma, like: 0,1,2,3. "
              "This option is useful when doing multi process training and "
              "each process have only one device (GPU). If you want to use "
              "all visible devices, set this to empty string. NOTE: the "
              "reason of doing this is that we want to use P2P communication"
              "between GPU devices, use CUDA_VISIBLE_DEVICES can only use"
              "share-memory only.");

L
liaogang 已提交
78 79 80
namespace paddle {
namespace platform {

S
sneaxiy 已提交
81 82 83 84 85 86 87
static int GetCUDADeviceCountImpl() {
  const auto *cuda_visible_devices = std::getenv("CUDA_VISIBLE_DEVICES");
  if (cuda_visible_devices != nullptr) {
    std::string cuda_visible_devices_str(cuda_visible_devices);
    if (std::all_of(cuda_visible_devices_str.begin(),
                    cuda_visible_devices_str.end(),
                    [](char ch) { return ch == ' '; })) {
S
sneaxiy 已提交
88
      VLOG(2) << "CUDA_VISIBLE_DEVICES is set to be empty. No GPU detected.";
S
sneaxiy 已提交
89 90 91 92
      return 0;
    }
  }

L
liaogang 已提交
93
  int count;
L
liaogang 已提交
94
  PADDLE_ENFORCE(
L
liaogang 已提交
95
      cudaGetDeviceCount(&count),
96
      "cudaGetDeviceCount failed in paddle::platform::GetCUDADeviceCount");
L
liaogang 已提交
97 98 99
  return count;
}

S
sneaxiy 已提交
100 101 102 103 104
int GetCUDADeviceCount() {
  static auto dev_cnt = GetCUDADeviceCountImpl();
  return dev_cnt;
}

105 106 107 108 109 110 111 112 113
int GetCUDAComputeCapability(int id) {
  PADDLE_ENFORCE_LT(id, GetCUDADeviceCount(), "id must less than GPU count");
  cudaDeviceProp device_prop;
  PADDLE_ENFORCE(cudaGetDeviceProperties(&device_prop, id),
                 "cudaGetDeviceProperties failed in "
                 "paddle::platform::GetCUDAComputeCapability");
  return device_prop.major * 10 + device_prop.minor;
}

C
chengduo 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
int GetCUDARuntimeVersion(int id) {
  PADDLE_ENFORCE_LT(id, GetCUDADeviceCount(), "id must less than GPU count");
  int runtime_version = 0;
  PADDLE_ENFORCE(cudaRuntimeGetVersion(&runtime_version),
                 "cudaRuntimeGetVersion failed in "
                 "paddle::platform::cudaRuntimeGetVersion");
  return runtime_version;
}

int GetCUDADriverVersion(int id) {
  PADDLE_ENFORCE_LT(id, GetCUDADeviceCount(), "id must less than GPU count");
  int driver_version = 0;
  PADDLE_ENFORCE(cudaDriverGetVersion(&driver_version),
                 "cudaDriverGetVersion failed in "
                 "paddle::platform::GetCUDADriverVersion");
  return driver_version;
}

132 133 134 135 136 137 138 139 140 141
bool TensorCoreAvailable() {
#if CUDA_VERSION >= 9000
  int device = GetCurrentDeviceId();
  int driver_version = GetCUDAComputeCapability(device);
  return driver_version >= 70;
#else
  return false;
#endif
}

C
chengduoZH 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
int GetCUDAMultiProcessors(int id) {
  PADDLE_ENFORCE_LT(id, GetCUDADeviceCount(), "id must less than GPU count");
  int count;
  PADDLE_ENFORCE(
      cudaDeviceGetAttribute(&count, cudaDevAttrMultiProcessorCount, id),
      "cudaDeviceGetAttribute failed in "
      "paddle::platform::GetCUDAMultiProcessors");
  return count;
}

int GetCUDAMaxThreadsPerMultiProcessor(int id) {
  PADDLE_ENFORCE_LT(id, GetCUDADeviceCount(), "id must less than GPU count");
  int count;
  PADDLE_ENFORCE(cudaDeviceGetAttribute(
                     &count, cudaDevAttrMaxThreadsPerMultiProcessor, id),
                 "cudaDeviceGetAttribute failed in "
                 "paddle::platform::GetCUDAMaxThreadsPerMultiProcessor");
  return count;
}

L
liaogang 已提交
162 163
int GetCurrentDeviceId() {
  int device_id;
L
liaogang 已提交
164
  PADDLE_ENFORCE(
L
liaogang 已提交
165 166 167 168 169
      cudaGetDevice(&device_id),
      "cudaGetDevice failed in paddle::platform::GetCurrentDeviceId");
  return device_id;
}

170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
//! Get a list of device ids from environment variable or use all.
std::vector<int> GetSelectedDevices() {
  // use user specified GPUs in single-node multi-process mode.
  std::vector<int> devices;
  if (!FLAGS_selected_gpus.empty()) {
    auto devices_str = paddle::string::Split(FLAGS_selected_gpus, ',');
    for (auto id : devices_str) {
      devices.push_back(atoi(id.c_str()));
    }
  } else {
    int count = GetCUDADeviceCount();
    for (int i = 0; i < count; ++i) {
      devices.push_back(i);
    }
  }
  return devices;
}

L
liaogang 已提交
188
void SetDeviceId(int id) {
Q
qijun 已提交
189
  // TODO(qijun): find a better way to cache the cuda device count
Y
Yang Yang 已提交
190
  PADDLE_ENFORCE_LT(id, GetCUDADeviceCount(), "id must less than GPU count");
L
liaogang 已提交
191
  PADDLE_ENFORCE(cudaSetDevice(id),
L
liaogang 已提交
192 193 194
                 "cudaSetDevice failed in paddle::platform::SetDeviceId");
}

195 196
void GpuMemoryUsage(size_t *available, size_t *total) {
  PADDLE_ENFORCE(cudaMemGetInfo(available, total),
L
liaogang 已提交
197 198 199 200
                 "cudaMemGetInfo failed in paddle::platform::GetMemoryUsage");
}

size_t GpuMaxAllocSize() {
Z
zhhsplendid 已提交
201 202 203 204 205 206 207 208 209 210 211
  return std::max(GpuInitAllocSize(), GpuReallocSize());
}

size_t GpuInitAllocSize() {
  if (FLAGS_gpu_init_memory_in_mb > 0ul) {
    // Initial memory will be allocated by FLAGS_gpu_init_memory_in_mb
    return static_cast<size_t>(FLAGS_gpu_init_memory_in_mb << 20);
  }

  // FLAGS_gpu_init_memory_in_mb is 0, initial memory will be allocated by
  // fraction
L
liaogang 已提交
212 213 214
  size_t total = 0;
  size_t available = 0;

215
  GpuMemoryUsage(&available, &total);
Z
zhhsplendid 已提交
216
  size_t reserving = static_cast<size_t>(fraction_reserve_gpu_memory * total);
L
liaogang 已提交
217

Z
zhhsplendid 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
  return static_cast<size_t>((total - reserving) *
                             FLAGS_fraction_of_gpu_memory_to_use);
}

size_t GpuReallocSize() {
  if (FLAGS_gpu_reallocate_memory_in_mb > 0ul) {
    // Additional memory will be allocated by FLAGS_gpu_reallocate_memory_in_mb
    return static_cast<size_t>(FLAGS_gpu_reallocate_memory_in_mb << 20);
  }

  // FLAGS_gpu_reallocate_memory_in_mb is 0, additional memory will be allocated
  // by fraction
  size_t total = 0;
  size_t available = 0;

  GpuMemoryUsage(&available, &total);
  size_t reserving = static_cast<size_t>(fraction_reserve_gpu_memory * total);

  return static_cast<size_t>((total - reserving) *
                             FLAGS_fraction_of_gpu_memory_to_use);
L
liaogang 已提交
238 239
}

L
liaogang 已提交
240 241 242 243 244 245 246
size_t GpuMinChunkSize() {
  // Allow to allocate the minimum chunk size is 256 bytes.
  return 1 << 8;
}

size_t GpuMaxChunkSize() {
  size_t total = 0;
C
chenweihang 已提交
247
  size_t available = 0;
L
liaogang 已提交
248

C
chenweihang 已提交
249
  GpuMemoryUsage(&available, &total);
M
minqiyang 已提交
250 251
  VLOG(10) << "GPU Usage " << available / 1024 / 1024 << "M/"
           << total / 1024 / 1024 << "M";
Z
zhhsplendid 已提交
252
  size_t reserving = static_cast<size_t>(fraction_reserve_gpu_memory * total);
L
liaogang 已提交
253
  // If available less than minimum chunk size, no usable memory exists.
C
chenweihang 已提交
254 255 256
  available =
      std::min(std::max(available, GpuMinChunkSize()) - GpuMinChunkSize(),
               total - reserving);
257

Z
zhhsplendid 已提交
258
  size_t allocating = GpuMaxAllocSize();
L
liaogang 已提交
259

C
chenweihang 已提交
260 261
  PADDLE_ENFORCE_LE(allocating, available,
                    "Insufficient GPU memory to allocation.");
262

C
chenweihang 已提交
263
  return allocating;
L
liaogang 已提交
264 265
}

L
liaogang 已提交
266 267
void GpuMemcpyAsync(void *dst, const void *src, size_t count,
                    enum cudaMemcpyKind kind, cudaStream_t stream) {
L
liaogang 已提交
268
  PADDLE_ENFORCE(cudaMemcpyAsync(dst, src, count, kind, stream),
269 270 271
                 "cudaMemcpyAsync failed in paddle::platform::GpuMemcpyAsync "
                 "(%p -> %p, length: %d)",
                 src, dst, static_cast<int>(count));
L
liaogang 已提交
272 273
}

274 275 276
void GpuMemcpySync(void *dst, const void *src, size_t count,
                   enum cudaMemcpyKind kind) {
  PADDLE_ENFORCE(cudaMemcpy(dst, src, count, kind),
277 278 279
                 "cudaMemcpy failed in paddle::platform::GpuMemcpySync (%p -> "
                 "%p, length: %d)",
                 src, dst, static_cast<int>(count));
280 281 282 283
}

void GpuMemcpyPeerAsync(void *dst, int dst_device, const void *src,
                        int src_device, size_t count, cudaStream_t stream) {
L
liaogang 已提交
284
  PADDLE_ENFORCE(
L
liaogang 已提交
285
      cudaMemcpyPeerAsync(dst, dst_device, src, src_device, count, stream),
286 287 288 289 290 291 292 293
      "cudaMemcpyPeerAsync failed in paddle::platform::GpuMemcpyPeerAsync");
}

void GpuMemcpyPeerSync(void *dst, int dst_device, const void *src,
                       int src_device, size_t count) {
  PADDLE_ENFORCE(
      cudaMemcpyPeer(dst, dst_device, src, src_device, count),
      "cudaMemcpyPeer failed in paddle::platform::GpuMemcpyPeerSync");
L
liaogang 已提交
294
}
D
dzhwinter 已提交
295 296 297 298 299

void GpuMemsetAsync(void *dst, int value, size_t count, cudaStream_t stream) {
  PADDLE_ENFORCE(cudaMemsetAsync(dst, value, count, stream),
                 "cudaMemsetAsync failed in paddle::platform::GpuMemsetAsync");
}
L
liaogang 已提交
300 301
}  // namespace platform
}  // namespace paddle