activation_op.cc 19.1 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Q
qijun 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Q
qijun 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Q
qijun 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/activation_op.h"
D
dzhwinter 已提交
16
#include <string>
17
#include "paddle/fluid/operators/mkldnn/mkldnn_activation_op.h"
D
dzhwinter 已提交
18
#include "paddle/fluid/platform/port.h"
19 20 21
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
Q
qijun 已提交
22 23 24 25

namespace paddle {
namespace operators {

26 27
using paddle::framework::Tensor;

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
#define REGISTER_ACTIVATION_OP_MAKER(OP_NAME, OP_COMMENT)                    \
  class OP_NAME##OpMaker                                                     \
      : public ::paddle::framework::OpProtoAndCheckerMaker {                 \
   public:                                                                   \
    void Make() override {                                                   \
      AddInput("X", "Input of " #OP_NAME " operator");                       \
      AddOutput("Out", "Output of " #OP_NAME " operator");                   \
      AddAttr<bool>("use_mkldnn",                                            \
                    "(bool, default false) Only used in mkldnn kernel")      \
          .SetDefault(false);                                                \
      AddAttr<bool>("use_cudnn",                                             \
                    "(bool, default false) Only used in cudnn kernel, need " \
                    "install cudnn")                                         \
          .SetDefault(false);                                                \
      AddAttr<bool>(                                                         \
          "is_test",                                                         \
          "(bool, default false) Set to true for inference only, false "     \
          "for training. Some layers may run faster when this is true.")     \
          .SetDefault(false);                                                \
      AddComment(OP_COMMENT);                                                \
    }                                                                        \
D
dzhwinter 已提交
49
  }
D
dzhwinter 已提交
50 51 52 53 54 55 56 57 58

#define REGISTER_ACTIVATION_OP_GRAD_MAKER(OP_NAME, KERNEL_TYPE)              \
  class OP_NAME##GradMaker                                                   \
      : public ::paddle::framework::SingleGradOpDescMaker {                  \
   public:                                                                   \
    using ::paddle::framework::SingleGradOpDescMaker::SingleGradOpDescMaker; \
                                                                             \
   protected:                                                                \
    std::unique_ptr<::paddle::framework::OpDesc> Apply() const override {    \
59
      auto* op = new ::paddle::framework::OpDesc();                          \
D
dzhwinter 已提交
60 61 62 63 64 65 66 67 68 69
      op->SetType(#KERNEL_TYPE "_grad");                                     \
      op->SetInput("Out", Output("Out"));                                    \
      op->SetInput(::paddle::framework::GradVarName("Out"),                  \
                   OutputGrad("Out"));                                       \
                                                                             \
      op->SetAttrMap(Attrs());                                               \
                                                                             \
      op->SetOutput(::paddle::framework::GradVarName("X"), InputGrad("X"));  \
      return std::unique_ptr<::paddle::framework::OpDesc>(op);               \
    }                                                                        \
D
dzhwinter 已提交
70
  }
D
dzhwinter 已提交
71

72 73 74 75
framework::OpKernelType GetKernelType(const framework::ExecutionContext& ctx,
                                      const framework::OperatorWithKernel& oper,
                                      const std::string& name) {
  framework::LibraryType library{framework::LibraryType::kPlain};
M
mozga-intel 已提交
76
  framework::DataLayout layout = framework::DataLayout::kAnyLayout;
77 78 79 80 81 82
#ifdef PADDLE_WITH_CUDA
  auto it1 = oper.Attrs().find("use_cudnn");
  if (it1 != oper.Attrs().end() && platform::CanCUDNNBeUsed(ctx)) {
    library = framework::LibraryType::kCUDNN;
  }
#endif
83 84 85 86 87
#ifdef PADDLE_WITH_MKLDNN
  auto it = oper.Attrs().find("use_mkldnn");
  if (library == framework::LibraryType::kPlain && it != oper.Attrs().end() &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
88
    layout = framework::DataLayout::kMKLDNN;
89 90 91
  }
#endif
  return framework::OpKernelType(
C
chengduo 已提交
92 93
      framework::GetDataTypeOfVar(ctx.InputVar(name)), ctx.GetPlace(), layout,
      library);
94 95
}

Q
qijun 已提交
96 97 98 99
class ActivationOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

100
  void InferShape(framework::InferShapeContext* ctx) const override {
101
    ctx->ShareDim("X", /*->*/ "Out");
F
fengjiayi 已提交
102
    ctx->ShareLoD("X", /*->*/ "Out");
Q
qijun 已提交
103
  }
104

105
 protected:
106 107 108 109
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "X");
  }
Q
qijun 已提交
110 111
};

C
chengduo 已提交
112 113 114 115 116 117
class ActivationOpInferVarType
    : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
      const override {
    return std::unordered_map<std::string, std::string>{{"X", /*->*/ "Out"}};
118 119 120
  }
};

Q
qijun 已提交
121 122 123 124
class ActivationOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

125
  void InferShape(framework::InferShapeContext* ctx) const override {
126 127
    ctx->ShareDim("Out", framework::GradVarName("X"));
    ctx->ShareLoD("Out", framework::GradVarName("X"));
Q
qijun 已提交
128
  }
129

130
 protected:
131 132 133 134
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "Out");
  }
Q
qijun 已提交
135 136
};

D
dzhwinter 已提交
137
UNUSED constexpr char SigmoidDoc[] = R"DOC(
138
Sigmoid Activation Operator
K
Kexin Zhao 已提交
139

140
$$out = \\frac{1}{1 + e^{-x}}$$
K
Kexin Zhao 已提交
141

D
dzhwinter 已提交
142
)DOC";
Q
qijun 已提交
143

D
dzhwinter 已提交
144
UNUSED constexpr char LogSigmoidDoc[] = R"DOC(
145
Logsigmoid Activation Operator
K
Kexin Zhao 已提交
146

147
$$out = \\log \\frac{1}{1 + e^{-x}}$$
K
Kexin Zhao 已提交
148

D
dzhwinter 已提交
149
)DOC";
150

D
dzhwinter 已提交
151
UNUSED constexpr char ExpDoc[] = R"DOC(
K
kexinzhao 已提交
152
Exp Activation Operator.
K
Kexin Zhao 已提交
153

F
fengjiayi 已提交
154
$out = e^x$
K
Kexin Zhao 已提交
155

D
dzhwinter 已提交
156
)DOC";
Q
qijun 已提交
157

D
dzhwinter 已提交
158
UNUSED constexpr char ReluDoc[] = R"DOC(
K
kexinzhao 已提交
159
Relu Activation Operator.
K
Kexin Zhao 已提交
160

F
fengjiayi 已提交
161
$out = \max(x, 0)$
K
Kexin Zhao 已提交
162

D
dzhwinter 已提交
163
)DOC";
K
Kexin Zhao 已提交
164

C
Clementine 已提交
165 166 167 168 169 170 171
UNUSED constexpr char GeluDoc[] = R"DOC(
Gelu Activation Operator.

$out = \\frac{1 + erf(\\frac{x}{\\sqrt{2}})}{2} x$

)DOC";

D
dzhwinter 已提交
172
UNUSED constexpr char TanhDoc[] = R"DOC(
K
kexinzhao 已提交
173
Tanh Activation Operator.
K
Kexin Zhao 已提交
174

Q
update  
qiaolongfei 已提交
175
$$out = \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
K
Kexin Zhao 已提交
176

D
dzhwinter 已提交
177
)DOC";
178

D
dzhwinter 已提交
179
UNUSED constexpr char TanhShrinkDoc[] = R"DOC(
K
kexinzhao 已提交
180
TanhShrink Activation Operator.
K
Kexin Zhao 已提交
181

Y
Yan Chunwei 已提交
182
$$out = x - \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
K
Kexin Zhao 已提交
183

D
dzhwinter 已提交
184
)DOC";
K
Kexin Zhao 已提交
185

D
dzhwinter 已提交
186
UNUSED constexpr char SqrtDoc[] = R"DOC(
K
kexinzhao 已提交
187
Sqrt Activation Operator.
K
Kexin Zhao 已提交
188

F
fengjiayi 已提交
189
$out = \sqrt{x}$
K
Kexin Zhao 已提交
190

D
dzhwinter 已提交
191
)DOC";
192

D
dzhwinter 已提交
193
UNUSED constexpr char AbsDoc[] = R"DOC(
K
kexinzhao 已提交
194
Abs Activation Operator.
K
Kexin Zhao 已提交
195

F
fengjiayi 已提交
196
$out = |x|$
K
Kexin Zhao 已提交
197

D
dzhwinter 已提交
198
)DOC";
199

D
dzhwinter 已提交
200
UNUSED constexpr char CeilDoc[] = R"DOC(
D
dzhwinter 已提交
201 202
Ceil Activation Operator.

203
$out = \left \lceil x \right \rceil$
D
dzhwinter 已提交
204

D
dzhwinter 已提交
205
)DOC";
D
dzhwinter 已提交
206

D
dzhwinter 已提交
207
UNUSED constexpr char FloorDoc[] = R"DOC(
D
dzhwinter 已提交
208 209
Floor Activation Operator.

210
$out = \left \lfloor x \right \rfloor$
D
dzhwinter 已提交
211

D
dzhwinter 已提交
212
)DOC";
D
dzhwinter 已提交
213

D
dzhwinter 已提交
214
UNUSED constexpr char CosDoc[] = R"DOC(
C
add sin  
chengduoZH 已提交
215
Cosine Activation Operator.
C
add cos  
chengduoZH 已提交
216 217 218

$out = cos(x)$

D
dzhwinter 已提交
219
)DOC";
C
add cos  
chengduoZH 已提交
220

D
dzhwinter 已提交
221
UNUSED constexpr char SinDoc[] = R"DOC(
C
add sin  
chengduoZH 已提交
222 223 224 225
Sine Activation Operator.

$out = sin(x)$

D
dzhwinter 已提交
226
)DOC";
C
add sin  
chengduoZH 已提交
227

D
dzhwinter 已提交
228
UNUSED constexpr char RoundDoc[] = R"DOC(
D
dzhwinter 已提交
229 230
Round Activation Operator.

F
fengjiayi 已提交
231
$out = [x]$
D
dzhwinter 已提交
232

D
dzhwinter 已提交
233
)DOC";
D
dzhwinter 已提交
234

D
dzhwinter 已提交
235
UNUSED constexpr char ReciprocalDoc[] = R"DOC(
K
kexinzhao 已提交
236
Reciprocal Activation Operator.
K
Kexin Zhao 已提交
237

238
$$out = \\frac{1}{x}$$
K
Kexin Zhao 已提交
239

D
dzhwinter 已提交
240
)DOC";
241

D
dzhwinter 已提交
242
UNUSED constexpr char LogDoc[] = R"DOC(
K
kexinzhao 已提交
243
Log Activation Operator.
K
Kexin Zhao 已提交
244

F
fengjiayi 已提交
245
$out = \ln(x)$
K
Kexin Zhao 已提交
246 247 248

Natural logarithm of x.

D
dzhwinter 已提交
249 250
)DOC";

D
dzhwinter 已提交
251
UNUSED constexpr char SquareDoc[] = R"DOC(
D
dzhwinter 已提交
252 253 254
Square Activation Operator.

$out = x^2$
255

D
dzhwinter 已提交
256 257
)DOC";

D
dzhwinter 已提交
258
UNUSED constexpr char SoftplusDoc[] = R"DOC(
D
dzhwinter 已提交
259 260 261 262 263 264
Softplus Activation Operator.

$out = \ln(1 + e^{x})$

)DOC";

D
dzhwinter 已提交
265
UNUSED constexpr char SoftsignDoc[] = R"DOC(
D
dzhwinter 已提交
266 267
Softsign Activation Operator.

268
$$out = \\frac{x}{1 + \|x\|}$$
D
dzhwinter 已提交
269 270 271 272

)DOC";

class LeakyReluOpMaker : public framework::OpProtoAndCheckerMaker {
273
 public:
Y
Yu Yang 已提交
274
  void Make() override {
D
dzhwinter 已提交
275 276 277
    AddInput("X", "Input of LeakyRelu operator");
    AddOutput("Out", "Output of LeakyRelu operator");
    AddAttr<float>("alpha", "The small negative slope").SetDefault(0.02f);
K
Kexin Zhao 已提交
278
    AddComment(R"DOC(
D
dzhwinter 已提交
279
LeakyRelu Activation Operator.
K
Kexin Zhao 已提交
280

D
dzhwinter 已提交
281
$out = \max(x, \alpha * x)$
K
Kexin Zhao 已提交
282 283

)DOC");
284 285 286
  }
};

D
dzhwinter 已提交
287
class SoftShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
K
kexinzhao 已提交
288
 public:
Y
Yu Yang 已提交
289
  void Make() override {
D
dzhwinter 已提交
290 291 292
    AddInput("X", "Input of Softshrink operator");
    AddOutput("Out", "Output of Softshrink operator");
    AddAttr<float>("lambda", "non-negative offset").SetDefault(0.5f);
K
Kexin Zhao 已提交
293
    AddComment(R"DOC(
294 295 296
:strong:`Softshrink Activation Operator`

..  math::
297
    out = \begin{cases}
298 299 300 301
         x - \lambda, \text{if } x > \lambda \\
         x + \lambda, \text{if } x < -\lambda \\
         0,  \text{otherwise}
         \end{cases}
K
Kexin Zhao 已提交
302 303

)DOC");
K
kexinzhao 已提交
304 305 306
  }
};

D
dzhwinter 已提交
307
class HardShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
308
 public:
Y
Yu Yang 已提交
309
  void Make() override {
D
dzhwinter 已提交
310 311
    AddInput("X", "Input of HardShrink operator");
    AddOutput("Out", "Output of HardShrink operator");
Y
yuyang18 已提交
312 313
    AddAttr<float>("threshold",
                   "The value of threshold for HardShrink. [default: 0.5]")
D
dzhwinter 已提交
314
        .SetDefault(0.5f);
K
Kexin Zhao 已提交
315
    AddComment(R"DOC(
Y
yuyang18 已提交
316
:strong:`HardShrink activation operator`
K
Kexin Zhao 已提交
317

Y
yuyang18 已提交
318 319 320 321 322 323
..  math::
    out = \begin{cases}
            x, \text{if } x > \lambda \\
            x, \text{if } x < -\lambda \\
            0,  \text{otherwise}
          \end{cases}
K
Kexin Zhao 已提交
324 325

)DOC");
326 327 328
  }
};

329 330
class BReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
331
  void Make() override {
332
    AddInput("X", "Input of BRelu operator");
F
fengjiayi 已提交
333
    AddOutput("Out", "Output of BRelu operator");
334 335 336 337
    AddAttr<float>("t_min", "The min marginal value of BRelu")
        .SetDefault(static_cast<float>(0));
    AddAttr<float>("t_max", "The max marginal value of BRelu")
        .SetDefault(static_cast<float>(24));
K
Kexin Zhao 已提交
338
    AddComment(R"DOC(
K
kexinzhao 已提交
339
BRelu Activation Operator.
K
Kexin Zhao 已提交
340

F
fengjiayi 已提交
341
$out = \max(\min(x, t_{min}), t_{max})$
K
Kexin Zhao 已提交
342 343

)DOC");
344 345 346 347 348
  }
};

class SoftReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
349
  void Make() override {
350
    AddInput("X", "Input of SoftRelu operator");
F
fengjiayi 已提交
351
    AddOutput("Out", "Output of SoftRelu operator");
352 353
    AddAttr<float>("threshold", "The threshold value of SoftRelu")
        .SetDefault(40.0f);
K
Kexin Zhao 已提交
354
    AddComment(R"DOC(
K
kexinzhao 已提交
355
SoftRelu Activation Operator.
K
Kexin Zhao 已提交
356

F
fengjiayi 已提交
357
$out = \ln(1 + \exp(\max(\min(x, threshold), threshold))$
K
Kexin Zhao 已提交
358 359

)DOC");
360 361 362
  }
};

363 364
class ELUOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
365
  void Make() override {
K
Kexin Zhao 已提交
366
    AddInput("X", "Input of ELU operator");
F
fengjiayi 已提交
367
    AddOutput("Out", "Output of ELU operator");
368
    AddAttr<float>("alpha", "The alpha value of ELU").SetDefault(1.0f);
369
    AddComment(R"DOC(
K
kexinzhao 已提交
370
ELU Activation Operator.
K
Kexin Zhao 已提交
371 372 373 374

Applies the following element-wise computation on the input according to
https://arxiv.org/abs/1511.07289.

F
fengjiayi 已提交
375
$out = \max(0, x) + \min(0, \alpha * (e^x - 1))$
K
Kexin Zhao 已提交
376 377

)DOC");
378 379 380
  }
};

381 382
class Relu6OpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
383
  void Make() override {
384
    AddInput("X", "Input of Relu6 operator");
F
fengjiayi 已提交
385
    AddOutput("Out", "Output of Relu6 operator");
386 387
    AddAttr<float>("threshold", "The threshold value of Relu6")
        .SetDefault(6.0f);
K
Kexin Zhao 已提交
388
    AddComment(R"DOC(
K
kexinzhao 已提交
389
Relu6 Activation Operator.
K
Kexin Zhao 已提交
390

F
fengjiayi 已提交
391
$out = \min(\max(0, x), 6)$
K
Kexin Zhao 已提交
392 393

)DOC");
394 395 396
  }
};

397 398
class PowOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
399
  void Make() override {
400
    AddInput("X", "Input of Pow operator");
F
fengjiayi 已提交
401
    AddOutput("Out", "Output of Pow operator");
402
    AddAttr<float>("factor", "The exponential factor of Pow").SetDefault(1.0f);
K
Kexin Zhao 已提交
403
    AddComment(R"DOC(
K
kexinzhao 已提交
404
Pow Activation Operator.
K
Kexin Zhao 已提交
405

F
fengjiayi 已提交
406
$out = x^{factor}$
K
Kexin Zhao 已提交
407 408

)DOC");
409 410 411 412 413
  }
};

class STanhOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
414
  void Make() override {
415
    AddInput("X", "Input of STanh operator");
F
fengjiayi 已提交
416
    AddOutput("Out", "Output of STanh operator");
417 418 419 420
    AddAttr<float>("scale_a", "The scale parameter of a for the input")
        .SetDefault(2.0f / 3.0f);
    AddAttr<float>("scale_b", "The scale parameter of b for the input")
        .SetDefault(1.7159f);
K
Kexin Zhao 已提交
421
    AddComment(R"DOC(
K
kexinzhao 已提交
422
STanh Activation Operator.
K
Kexin Zhao 已提交
423

Y
Yan Chunwei 已提交
424
$$out = b * \\frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}$$
K
Kexin Zhao 已提交
425 426

)DOC");
Q
qijun 已提交
427 428 429
  }
};

430 431
class ThresholdedReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
432
  void Make() override {
433
    AddInput("X", "Input of ThresholdedRelu operator");
F
fengjiayi 已提交
434
    AddOutput("Out", "Output of ThresholdedRelu operator");
Y
yuyang18 已提交
435 436
    AddAttr<float>("threshold",
                   "The threshold location of activation. [default 1.0].")
437
        .SetDefault(1.0f);
K
Kexin Zhao 已提交
438
    AddComment(R"DOC(
Y
yuyang18 已提交
439
:strong:`ThresholdedRelu activation operator`
K
Kexin Zhao 已提交
440

Y
yuyang18 已提交
441
..  math::
K
Kexin Zhao 已提交
442

Y
yuyang18 已提交
443
    out = \begin{cases}
Y
yuyang18 已提交
444
             x,  \text{if } x > threshold \\
Y
yuyang18 已提交
445 446
             0,  \text{otherwise}
          \end{cases}
K
Kexin Zhao 已提交
447
)DOC");
448 449 450
  }
};

451 452
class HardSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
453
  void Make() override {
454
    AddInput("X", "Input of HardSigmoid operator");
F
fengjiayi 已提交
455
    AddOutput("Out", "Output of HardSigmoid operator");
456 457 458 459
    AddAttr<float>("slope", "Slope for linear approximation of sigmoid")
        .SetDefault(0.2f);
    AddAttr<float>("offset", "Offset for linear approximation of sigmoid")
        .SetDefault(0.5f);
460
    AddComment(R"DOC(
K
kexinzhao 已提交
461
HardSigmoid Activation Operator.
462

463
Segment-wise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
K
Kexin Zhao 已提交
464
which is much faster than sigmoid.
465

F
fengjiayi 已提交
466
$out = \max(0, \min(1, slope * x + shift))$
467 468

The slope should be positive. The offset can be either positive or negative.
K
Kexin Zhao 已提交
469
The default slope and shift are set according to the above reference.
470 471
It is recommended to use the defaults for this activation.

K
Kexin Zhao 已提交
472
)DOC");
473 474 475
  }
};

A
Abhinav Arora 已提交
476 477
class SwishOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
478
  void Make() override {
A
Abhinav Arora 已提交
479
    AddInput("X", "Input of Swish operator");
F
fengjiayi 已提交
480
    AddOutput("Out", "Output of Swish operator");
A
Abhinav Arora 已提交
481 482 483 484
    AddAttr<float>("beta", "Constant beta of swish operator").SetDefault(1.0f);
    AddComment(R"DOC(
Swish Activation Operator.

F
fengjiayi 已提交
485
$$out = \\frac{x}{1 + e^{- \beta x}}$$
A
Abhinav Arora 已提交
486 487 488 489 490

)DOC");
  }
};

D
dzhwinter 已提交
491 492 493 494
REGISTER_ACTIVATION_OP_MAKER(Sigmoid, SigmoidDoc);
REGISTER_ACTIVATION_OP_MAKER(LogSigmoid, LogSigmoidDoc);
REGISTER_ACTIVATION_OP_MAKER(Exp, ExpDoc);
REGISTER_ACTIVATION_OP_MAKER(Relu, ReluDoc);
C
Clementine 已提交
495
REGISTER_ACTIVATION_OP_MAKER(Gelu, GeluDoc);
D
dzhwinter 已提交
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
REGISTER_ACTIVATION_OP_MAKER(Tanh, TanhDoc);
REGISTER_ACTIVATION_OP_MAKER(TanhShrink, TanhShrinkDoc);
REGISTER_ACTIVATION_OP_MAKER(Sqrt, SqrtDoc);
REGISTER_ACTIVATION_OP_MAKER(Abs, AbsDoc);
REGISTER_ACTIVATION_OP_MAKER(Ceil, CeilDoc);
REGISTER_ACTIVATION_OP_MAKER(Floor, FloorDoc);
REGISTER_ACTIVATION_OP_MAKER(Cos, CosDoc);
REGISTER_ACTIVATION_OP_MAKER(Sin, SinDoc);
REGISTER_ACTIVATION_OP_MAKER(Round, RoundDoc);
REGISTER_ACTIVATION_OP_MAKER(Reciprocal, ReciprocalDoc);
REGISTER_ACTIVATION_OP_MAKER(Log, LogDoc);
REGISTER_ACTIVATION_OP_MAKER(Square, SquareDoc);
REGISTER_ACTIVATION_OP_MAKER(Softplus, SoftplusDoc);
REGISTER_ACTIVATION_OP_MAKER(Softsign, SoftsignDoc);

D
dzhwinter 已提交
511 512
REGISTER_ACTIVATION_OP_GRAD_MAKER(Sigmoid, sigmoid);
REGISTER_ACTIVATION_OP_GRAD_MAKER(Relu, relu);
C
Clementine 已提交
513
REGISTER_ACTIVATION_OP_GRAD_MAKER(Gelu, gelu);
D
dzhwinter 已提交
514
REGISTER_ACTIVATION_OP_GRAD_MAKER(Exp, exp);
D
dzhwinter 已提交
515 516 517
REGISTER_ACTIVATION_OP_GRAD_MAKER(Tanh, tanh);
REGISTER_ACTIVATION_OP_GRAD_MAKER(Ceil, ceil);
REGISTER_ACTIVATION_OP_GRAD_MAKER(Floor, floor);
D
dzhwinter 已提交
518
REGISTER_ACTIVATION_OP_GRAD_MAKER(Sqrt, sqrt);
D
dzhwinter 已提交
519
REGISTER_ACTIVATION_OP_GRAD_MAKER(SoftRelu, soft_relu);
D
dzhwinter 已提交
520 521
REGISTER_ACTIVATION_OP_GRAD_MAKER(Relu6, relu6);
REGISTER_ACTIVATION_OP_GRAD_MAKER(Reciprocal, reciprocal);
D
dzhwinter 已提交
522
REGISTER_ACTIVATION_OP_GRAD_MAKER(HardSigmoid, hard_sigmoid);
Q
qijun 已提交
523 524 525 526
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
527

D
dzhwinter 已提交
528
#define FOR_EACH_INPLACE_OP_FUNCTOR(__macro) \
D
dzhwinter 已提交
529
  __macro(Sigmoid, sigmoid);                 \
530
  __macro(Relu, relu);                       \
D
dzhwinter 已提交
531
  __macro(Exp, exp);                         \
532
  __macro(Tanh, tanh);                       \
D
dzhwinter 已提交
533 534
  __macro(Ceil, ceil);                       \
  __macro(Floor, floor);                     \
535
  __macro(Sqrt, sqrt);                       \
D
dzhwinter 已提交
536 537 538 539
  __macro(SoftRelu, soft_relu);              \
  __macro(Relu6, relu6);                     \
  __macro(Reciprocal, reciprocal);           \
  __macro(HardSigmoid, hard_sigmoid);
D
dzhwinter 已提交
540 541

#define FOR_EACH_OP_FUNCTOR(__macro) \
D
dzhwinter 已提交
542 543
  __macro(LogSigmoid, logsigmoid);   \
  __macro(SoftShrink, softshrink);   \
544
  __macro(Abs, abs);                 \
D
dzhwinter 已提交
545 546 547 548 549
  __macro(Cos, cos);                 \
  __macro(Sin, sin);                 \
  __macro(Round, round);             \
  __macro(Log, log);                 \
  __macro(Square, square);           \
C
Clementine 已提交
550
  __macro(Gelu, gelu);               \
D
dzhwinter 已提交
551 552 553 554 555 556 557 558 559 560 561 562
  __macro(BRelu, brelu);             \
  __macro(Pow, pow);                 \
  __macro(STanh, stanh);             \
  __macro(Softplus, softplus);       \
  __macro(Softsign, softsign);       \
  __macro(LeakyRelu, leaky_relu);    \
  __macro(TanhShrink, tanh_shrink);  \
  __macro(ELU, elu);                 \
  __macro(HardShrink, hard_shrink);  \
  __macro(Swish, swish);             \
  __macro(ThresholdedRelu, thresholded_relu);

D
dzhwinter 已提交
563 564 565 566 567 568 569 570
#define REGISTER_INPLACE_ACTIVATION_OP(OP_NAME, KERNEL_TYPE)                   \
  REGISTER_OPERATOR(KERNEL_TYPE, ::paddle::operators::ActivationOp,            \
                    ::paddle::operators::OP_NAME##OpMaker,                     \
                    ::paddle::operators::ActivationOpInferVarType,             \
                    ::paddle::operators::OP_NAME##GradMaker,                   \
                    ::paddle::framework::SingleOpInplaceInToOut);              \
  REGISTER_OPERATOR(KERNEL_TYPE##_grad, ::paddle::operators::ActivationOpGrad, \
                    ::paddle::framework::SingleOpInplaceInToOut)
D
dzhwinter 已提交
571

D
dzhwinter 已提交
572 573 574
#define REGISTER_ACTIVATION_OP(OP_NAME, KERNEL_TYPE)                    \
  REGISTER_OPERATOR(KERNEL_TYPE, ::paddle::operators::ActivationOp,     \
                    ::paddle::operators::OP_NAME##OpMaker,              \
575
                    ::paddle::operators::ActivationOpInferVarType,      \
D
dzhwinter 已提交
576 577
                    ::paddle::framework::DefaultGradOpDescMaker<true>); \
  REGISTER_OPERATOR(KERNEL_TYPE##_grad, ::paddle::operators::ActivationOpGrad)
A
Abhinav Arora 已提交
578

Q
QI JUN 已提交
579 580 581 582 583 584 585 586 587 588 589
#define REGISTER_ACTIVATION_CPU_KERNEL(act_type, functor, grad_functor)   \
  REGISTER_OP_CPU_KERNEL(                                                 \
      act_type, ops::ActivationKernel<paddle::platform::CPUDeviceContext, \
                                      ops::functor<float>>,               \
      ops::ActivationKernel<paddle::platform::CPUDeviceContext,           \
                            ops::functor<double>>);                       \
  REGISTER_OP_CPU_KERNEL(                                                 \
      act_type##_grad,                                                    \
      ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,       \
                                ops::grad_functor<float>>,                \
      ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,       \
Y
Yu Yang 已提交
590
                                ops::grad_functor<double>>);
591

D
dzhwinter 已提交
592
FOR_EACH_OP_FUNCTOR(REGISTER_ACTIVATION_OP);
D
dzhwinter 已提交
593
FOR_EACH_INPLACE_OP_FUNCTOR(REGISTER_INPLACE_ACTIVATION_OP);
594
FOR_EACH_KERNEL_FUNCTOR(REGISTER_ACTIVATION_CPU_KERNEL);