notest_understand_sentiment.py 13.3 KB
Newer Older
1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from __future__ import print_function
D
dzhwinter 已提交
15

16
import unittest
17
import paddle.fluid as fluid
18
import paddle
19
import contextlib
20
import math
21
import numpy as np
22
import sys
武毅 已提交
23
import os
24 25 26 27


def convolution_net(data, label, input_dim, class_dim=2, emb_dim=32,
                    hid_dim=32):
28 29
    emb = fluid.layers.embedding(
        input=data, size=[input_dim, emb_dim], is_sparse=True)
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
    conv_3 = fluid.nets.sequence_conv_pool(
        input=emb,
        num_filters=hid_dim,
        filter_size=3,
        act="tanh",
        pool_type="sqrt")
    conv_4 = fluid.nets.sequence_conv_pool(
        input=emb,
        num_filters=hid_dim,
        filter_size=4,
        act="tanh",
        pool_type="sqrt")
    prediction = fluid.layers.fc(input=[conv_3, conv_4],
                                 size=class_dim,
                                 act="softmax")
    cost = fluid.layers.cross_entropy(input=prediction, label=label)
Y
Yu Yang 已提交
46
    avg_cost = fluid.layers.mean(cost)
47
    accuracy = fluid.layers.accuracy(input=prediction, label=label)
48
    return avg_cost, accuracy, prediction
Q
QI JUN 已提交
49 50


Y
Yu Yang 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
def dyn_rnn_lstm(data, label, input_dim, class_dim=2, emb_dim=32,
                 lstm_size=128):
    emb = fluid.layers.embedding(
        input=data, size=[input_dim, emb_dim], is_sparse=True)
    sentence = fluid.layers.fc(input=emb, size=lstm_size, act='tanh')

    rnn = fluid.layers.DynamicRNN()
    with rnn.block():
        word = rnn.step_input(sentence)
        prev_hidden = rnn.memory(value=0.0, shape=[lstm_size])
        prev_cell = rnn.memory(value=0.0, shape=[lstm_size])

        def gate_common(ipt, hidden, size):
            gate0 = fluid.layers.fc(input=ipt, size=size, bias_attr=True)
            gate1 = fluid.layers.fc(input=hidden, size=size, bias_attr=False)
            return gate0 + gate1

        forget_gate = fluid.layers.sigmoid(x=gate_common(word, prev_hidden,
                                                         lstm_size))
        input_gate = fluid.layers.sigmoid(x=gate_common(word, prev_hidden,
                                                        lstm_size))
        output_gate = fluid.layers.sigmoid(x=gate_common(word, prev_hidden,
                                                         lstm_size))
        cell_gate = fluid.layers.sigmoid(x=gate_common(word, prev_hidden,
                                                       lstm_size))

        cell = forget_gate * prev_cell + input_gate * cell_gate
        hidden = output_gate * fluid.layers.tanh(x=cell)
        rnn.update_memory(prev_cell, cell)
        rnn.update_memory(prev_hidden, hidden)
        rnn.output(hidden)

    last = fluid.layers.sequence_last_step(rnn())
    prediction = fluid.layers.fc(input=last, size=class_dim, act="softmax")
    cost = fluid.layers.cross_entropy(input=prediction, label=label)
Y
Yu Yang 已提交
86
    avg_cost = fluid.layers.mean(cost)
Y
Yu Yang 已提交
87 88 89 90
    accuracy = fluid.layers.accuracy(input=prediction, label=label)
    return avg_cost, accuracy, prediction


Y
Yu Yang 已提交
91 92 93
def stacked_lstm_net(data,
                     label,
                     input_dim,
Q
QI JUN 已提交
94 95 96 97 98 99
                     class_dim=2,
                     emb_dim=128,
                     hid_dim=512,
                     stacked_num=3):
    assert stacked_num % 2 == 1

100 101
    emb = fluid.layers.embedding(
        input=data, size=[input_dim, emb_dim], is_sparse=True)
Q
QI JUN 已提交
102 103 104
    # add bias attr

    # TODO(qijun) linear act
105 106
    fc1 = fluid.layers.fc(input=emb, size=hid_dim)
    lstm1, cell1 = fluid.layers.dynamic_lstm(input=fc1, size=hid_dim)
Q
QI JUN 已提交
107 108 109 110

    inputs = [fc1, lstm1]

    for i in range(2, stacked_num + 1):
111 112
        fc = fluid.layers.fc(input=inputs, size=hid_dim)
        lstm, cell = fluid.layers.dynamic_lstm(
Q
QI JUN 已提交
113 114 115
            input=fc, size=hid_dim, is_reverse=(i % 2) == 0)
        inputs = [fc, lstm]

116 117
    fc_last = fluid.layers.sequence_pool(input=inputs[0], pool_type='max')
    lstm_last = fluid.layers.sequence_pool(input=inputs[1], pool_type='max')
Q
QI JUN 已提交
118

119 120 121 122
    prediction = fluid.layers.fc(input=[fc_last, lstm_last],
                                 size=class_dim,
                                 act='softmax')
    cost = fluid.layers.cross_entropy(input=prediction, label=label)
Y
Yu Yang 已提交
123
    avg_cost = fluid.layers.mean(cost)
124
    accuracy = fluid.layers.accuracy(input=prediction, label=label)
125
    return avg_cost, accuracy, prediction
Q
QI JUN 已提交
126

127

128 129 130 131 132 133
def create_random_lodtensor(lod, place, low, high):
    data = np.random.random_integers(low, high, [lod[-1], 1]).astype("int64")
    res = fluid.LoDTensor()
    res.set(data, place)
    res.set_lod([lod])
    return res
134

135

武毅 已提交
136 137 138 139 140 141
def train(word_dict,
          net_method,
          use_cuda,
          parallel=False,
          save_dirname=None,
          is_local=True):
142 143
    BATCH_SIZE = 128
    PASS_NUM = 5
Q
QI JUN 已提交
144 145 146
    dict_dim = len(word_dict)
    class_dim = 2

Y
Yu Yang 已提交
147 148 149
    data = fluid.layers.data(
        name="words", shape=[1], dtype="int64", lod_level=1)
    label = fluid.layers.data(name="label", shape=[1], dtype="int64")
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166

    if not parallel:
        cost, acc_out, prediction = net_method(
            data, label, input_dim=dict_dim, class_dim=class_dim)
    else:
        places = fluid.layers.get_places()
        pd = fluid.layers.ParallelDo(places)
        with pd.do():
            cost, acc, _ = net_method(
                pd.read_input(data),
                pd.read_input(label),
                input_dim=dict_dim,
                class_dim=class_dim)
            pd.write_output(cost)
            pd.write_output(acc)

        cost, acc = pd()
Y
Yu Yang 已提交
167 168
        cost = fluid.layers.mean(cost)
        acc_out = fluid.layers.mean(acc)
169 170 171 172
        prediction = None
        assert save_dirname is None

    adagrad = fluid.optimizer.Adagrad(learning_rate=0.002)
W
Wu Yi 已提交
173
    adagrad.minimize(cost)
Q
QI JUN 已提交
174 175 176 177 178

    train_data = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.imdb.train(word_dict), buf_size=1000),
        batch_size=BATCH_SIZE)
179
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
180
    exe = fluid.Executor(place)
Y
Yu Yang 已提交
181
    feeder = fluid.DataFeeder(feed_list=[data, label], place=place)
Q
QI JUN 已提交
182

武毅 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
    def train_loop(main_program):
        exe.run(fluid.default_startup_program())

        for pass_id in xrange(PASS_NUM):
            for data in train_data():
                cost_val, acc_val = exe.run(main_program,
                                            feed=feeder.feed(data),
                                            fetch_list=[cost, acc_out])
                print("cost=" + str(cost_val) + " acc=" + str(acc_val))
                if cost_val < 0.4 and acc_val > 0.8:
                    if save_dirname is not None:
                        fluid.io.save_inference_model(save_dirname, ["words"],
                                                      prediction, exe)
                    return
                if math.isnan(float(cost_val)):
                    sys.exit("got NaN loss, training failed.")
        raise AssertionError("Cost is too large for {0}".format(
            net_method.__name__))

    if is_local:
        train_loop(fluid.default_main_program())
    else:
        port = os.getenv("PADDLE_INIT_PORT", "6174")
        pserver_ips = os.getenv("PADDLE_INIT_PSERVERS")  # ip,ip...
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)  # ip:port,ip:port...
        trainers = int(os.getenv("TRAINERS"))
        current_endpoint = os.getenv("POD_IP") + ":" + port
        trainer_id = int(os.getenv("PADDLE_INIT_TRAINER_ID"))
        training_role = os.getenv("TRAINING_ROLE", "TRAINER")
        t = fluid.DistributeTranspiler()
Y
Yancey1989 已提交
216
        t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
武毅 已提交
217 218 219 220 221 222 223 224
        if training_role == "PSERVER":
            pserver_prog = t.get_pserver_program(current_endpoint)
            pserver_startup = t.get_startup_program(current_endpoint,
                                                    pserver_prog)
            exe.run(pserver_startup)
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
            train_loop(t.get_trainer_program())
225 226


L
Liu Yiqun 已提交
227
def infer(word_dict, use_cuda, save_dirname=None):
228 229 230 231 232 233
    if save_dirname is None:
        return

    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)

234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
    inference_scope = fluid.core.Scope()
    with fluid.scope_guard(inference_scope):
        # Use fluid.io.load_inference_model to obtain the inference program desc,
        # the feed_target_names (the names of variables that will be feeded
        # data using feed operators), and the fetch_targets (variables that
        # we want to obtain data from using fetch operators).
        [inference_program, feed_target_names,
         fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)

        word_dict_len = len(word_dict)

        lod = [0, 4, 10]
        tensor_words = create_random_lodtensor(
            lod, place, low=0, high=word_dict_len - 1)

        # Construct feed as a dictionary of {feed_target_name: feed_target_data}
        # and results will contain a list of data corresponding to fetch_targets.
        assert feed_target_names[0] == "words"
        results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_words},
                          fetch_list=fetch_targets,
                          return_numpy=False)
        print(results[0].lod())
        np_data = np.array(results[0])
        print("Inference Shape: ", np_data.shape)
        print("Inference results: ", np_data)
260 261


262
def main(word_dict, net_method, use_cuda, parallel=False, save_dirname=None):
263 264 265
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return

266 267 268 269 270 271
    train(
        word_dict,
        net_method,
        use_cuda,
        parallel=parallel,
        save_dirname=save_dirname)
272
    infer(word_dict, use_cuda, save_dirname)
273 274


275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
class TestUnderstandSentiment(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.word_dict = paddle.dataset.imdb.word_dict()

    @contextlib.contextmanager
    def new_program_scope(self):
        prog = fluid.Program()
        startup_prog = fluid.Program()
        scope = fluid.core.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(prog, startup_prog):
                yield

    def test_conv_cpu(self):
        with self.new_program_scope():
291 292 293 294
            main(
                self.word_dict,
                net_method=convolution_net,
                use_cuda=False,
295
                save_dirname="understand_sentiment_conv.inference.model")
296

297 298 299 300 301 302 303 304 305
    def test_conv_cpu_parallel(self):
        with self.new_program_scope():
            main(
                self.word_dict,
                net_method=convolution_net,
                use_cuda=False,
                parallel=True)

    @unittest.skip(reason="make CI faster")
306 307
    def test_stacked_lstm_cpu(self):
        with self.new_program_scope():
308 309 310 311 312
            main(
                self.word_dict,
                net_method=stacked_lstm_net,
                use_cuda=False,
                save_dirname="understand_sentiment_stacked_lstm.inference.model")
313

314 315 316 317 318 319 320 321
    def test_stacked_lstm_cpu_parallel(self):
        with self.new_program_scope():
            main(
                self.word_dict,
                net_method=stacked_lstm_net,
                use_cuda=False,
                parallel=True)

322 323
    def test_conv_gpu(self):
        with self.new_program_scope():
324 325 326 327
            main(
                self.word_dict,
                net_method=convolution_net,
                use_cuda=True,
328
                save_dirname="understand_sentiment_conv.inference.model")
329 330 331 332 333 334 335 336

    def test_conv_gpu_parallel(self):
        with self.new_program_scope():
            main(
                self.word_dict,
                net_method=convolution_net,
                use_cuda=True,
                parallel=True)
337

338
    @unittest.skip(reason="make CI faster")
339 340
    def test_stacked_lstm_gpu(self):
        with self.new_program_scope():
341 342 343 344 345
            main(
                self.word_dict,
                net_method=stacked_lstm_net,
                use_cuda=True,
                save_dirname="understand_sentiment_stacked_lstm.inference.model")
Q
QI JUN 已提交
346

347 348 349 350 351 352 353 354
    def test_stacked_lstm_gpu_parallel(self):
        with self.new_program_scope():
            main(
                self.word_dict,
                net_method=stacked_lstm_net,
                use_cuda=True,
                parallel=True)

Y
Yu Yang 已提交
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
    @unittest.skip(reason='make CI faster')
    def test_dynrnn_lstm_gpu(self):
        with self.new_program_scope():
            main(
                self.word_dict,
                net_method=dyn_rnn_lstm,
                use_cuda=True,
                parallel=False)

    def test_dynrnn_lstm_gpu_parallel(self):
        with self.new_program_scope():
            main(
                self.word_dict,
                net_method=dyn_rnn_lstm,
                use_cuda=True,
                parallel=True)

Q
QI JUN 已提交
372 373

if __name__ == '__main__':
374
    unittest.main()