attrs.py 9.4 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.trainer.config_parser import *
Q
qijun 已提交
16 17 18
__all__ = [
    'ParamAttr', 'ExtraAttr', 'ParameterAttribute', 'ExtraLayerAttribute'
]
Z
zhangjinchao01 已提交
19 20


21
def convert_and_compare(x, Type):
W
wangyanfei01 已提交
22 23 24 25 26 27
    """
    Convert x to be the same type as Type and then convert back to
    check whether there is a loss of information
    :param x: object to be checked
    :param Type: target type to check x over

28
    """
Q
qijun 已提交
29 30
    return type(x)(Type(x)) == x

31 32

def is_compatible_with(x, Type):
W
wangyanfei01 已提交
33 34 35 36 37
    """
    Check if x has a type compatible with Type
    :param x: object to be checked
    :param Type: target type to check x over

38 39 40 41 42
    """
    if type(x) == Type:
        return True
    try:
        if float == Type or int == Type:
W
wangyanfei01 已提交
43 44 45
            # avoid those types that can be converted to float/int but not very
            # meaningful and  could potentially lead to error
            # i.e., str and bool typed value should not be used for initializing float/int variable
46 47 48
            if not isinstance(x, str) and not isinstance(x, bool):
                return convert_and_compare(x, Type)
        elif bool == Type:
W
wangyanfei01 已提交
49
            # should not use string type to initialize bool variable
50 51 52 53 54 55 56 57
            if not isinstance(x, str):
                return convert_and_compare(x, Type)
        else:
            return False
    except:
        return False


Z
zhangjinchao01 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
class ParameterAttribute(object):
    """
    Parameter Attributes object. To fine-tuning network training process, user
    can set attribute to control training details, such as l1,l2 rate / learning
    rate / how to init param.

    NOTE: IT IS A HIGH LEVEL USER INTERFACE.

    :param is_static: True if this parameter will be fixed while training.
    :type is_static: bool

    :param initial_std: Gauss Random initialization standard deviation.
                        None if not using Gauss Random initialize parameter.
    :type initial_std: float or None
    :param initial_mean:  Gauss Random initialization mean.
                         None if not using Gauss Random initialize parameter.
    :type initial_mean: float or None
    :param initial_max: Uniform initialization max value.
    :type initial_max: float or None
    :param initial_min: Uniform initialization min value.
    :type initial_min: float or None
    :param l1_rate: the l1 regularization factor
    :type l1_rate: float or None
    :param l2_rate: the l2 regularization factor
    :type l2_rate: float or None
    :param learning_rate: The parameter learning rate. None means 1.
                          The learning rate when optimize is LEARNING_RATE =
                          GLOBAL_LEARNING_RATE * PARAMETER_LEARNING_RATE
                          * SCHEDULER_FACTOR.

    :type learning_rate: float or None
    :param momentum: The parameter momentum. None means use global value.
    :type momentum: float or None
W
wangyanfei01 已提交
91 92 93 94
    :param gradient_clipping_threshold: gradient clipping threshold. If gradient
                                        value larger than some value, will be
                                        clipped.
    :type gradient_clipping_threshold: float
Z
zhangjinchao01 已提交
95 96 97
    :param sparse_update: Enable sparse update for this parameter. It will
                          enable both local and remote sparse update.
    :type sparse_update: bool
X
xuwei06 已提交
98 99 100 101
    :param initializer: If not None, it should be a callable object which accepts
                        a parameter name and returns numpy array for the initial
                        value of the parameter
    :param initializer: callable object
Z
zhangjinchao01 已提交
102 103
    """

Q
qijun 已提交
104 105 106 107 108 109 110 111 112 113 114
    def __init__(self,
                 name=None,
                 is_static=False,
                 initial_std=None,
                 initial_mean=None,
                 initial_max=None,
                 initial_min=None,
                 l1_rate=None,
                 l2_rate=None,
                 learning_rate=None,
                 momentum=None,
W
wangyanfei01 已提交
115
                 gradient_clipping_threshold=None,
X
xuwei06 已提交
116 117
                 sparse_update=False,
                 initializer=None):
118 119
        self.attr = {}

Z
zhangjinchao01 已提交
120
        if is_static:
121 122 123
            self.attr['is_static'] = True

        if initial_std is None and initial_mean is None and initial_max \
Z
zhangjinchao01 已提交
124
                is None and initial_min is None:
125
            self.attr['initial_smart'] = True
126 127
        elif is_compatible_with(initial_std, float) or \
             is_compatible_with(initial_mean, float):
Z
zhangjinchao01 已提交
128 129 130 131 132
            if initial_std is not None:
                self.attr['initial_std'] = initial_std
            if initial_mean is not None:
                self.attr['initial_mean'] = initial_mean
            self.attr['initial_strategy'] = 0  # Gauss Random
133 134 135 136
        elif is_compatible_with(initial_max, float) and \
             is_compatible_with(initial_min, float):
            initial_max = initial_max
            initial_min = initial_min
Z
zhangjinchao01 已提交
137 138 139 140 141 142 143 144 145
            assert initial_min < initial_max
            initial_mean = (initial_max + initial_min) / 2
            initial_std = initial_mean - initial_min
            self.attr['initial_mean'] = initial_mean
            self.attr['initial_std'] = initial_std
            self.attr['initial_strategy'] = 1  # Uniform Random
        else:
            raise RuntimeError("Unexpected branch.")

146
        if not is_static and is_compatible_with(l1_rate, float):
Z
zhangjinchao01 已提交
147 148
            self.attr['decay_rate_l1'] = l1_rate

149
        if not is_static and is_compatible_with(l2_rate, float):
Z
zhangjinchao01 已提交
150 151
            self.attr['decay_rate'] = l2_rate

152
        if not is_static and is_compatible_with(learning_rate, float):
Z
zhangjinchao01 已提交
153 154
            self.attr['learning_rate'] = learning_rate

155
        if not is_static and is_compatible_with(momentum, float):
Z
zhangjinchao01 已提交
156 157 158 159 160 161 162 163 164
            self.attr['momentum'] = momentum

        if name is not None:
            self.attr['parameter_name'] = name

        if sparse_update:
            self.attr['sparse_update'] = True
            self.attr['sparse_remote_update'] = True

W
wangyanfei01 已提交
165 166 167 168
        if gradient_clipping_threshold is not None and \
                is_compatible_with(gradient_clipping_threshold, float):
            self.attr['gradient_clipping_threshold'] = \
                gradient_clipping_threshold
X
xuwei06 已提交
169 170
        if initializer is not None:
            self.attr['initializer'] = initializer
W
wangyanfei01 已提交
171

Z
zhangjinchao01 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
    def set_default_parameter_name(self, name):
        """
        Set default parameter name. If parameter not set, then will use default
        parameter name.


        :param name: default parameter name.
        :type name: basestring
        """
        if 'parameter_name' not in self.attr:
            self.attr['parameter_name'] = name

    @staticmethod
    def to_bias(bias_attr):
        if isinstance(bias_attr, ParameterAttribute):
            return Bias(**bias_attr.attr)
        else:
            return False


class ExtraLayerAttribute(object):
    """
    Some high level layer attributes config. You can set all attributes here,
    but some layer doesn't support all attributes. If you set an attribute to a
    layer that not support this attribute, paddle will print an error and core.

    :param error_clipping_threshold: Error clipping threshold.
    :type error_clipping_threshold: float
    :param drop_rate: Dropout rate. Dropout will create a mask on layer output.
                      The dropout rate is the zero rate of this mask. The
                      details of what dropout is please refer to `here
                      <https://www.cs.toronto.edu/~hinton/absps/
204
                      JMLRdropout.pdf>`_.
Z
zhangjinchao01 已提交
205
    :type drop_rate: float
P
Peng Li 已提交
206
    :param device: device ID of layer. device=-1, use CPU. device>=0, use GPU.
207 208 209 210
                   The details allocation in parallel_nn please refer to `here
                   <http://www.paddlepaddle.org/doc/ui/cmd_argument/
                   use_case.html#case-2-specify-layers-in-different-devices>`_.
    :type device: int
Z
zhangjinchao01 已提交
211 212
    """

Q
qijun 已提交
213 214 215 216
    def __init__(self,
                 error_clipping_threshold=None,
                 drop_rate=None,
                 device=None):
Z
zhangjinchao01 已提交
217
        self.attr = dict()
Y
Yu Yang 已提交
218 219 220 221 222 223 224 225 226
        if error_clipping_threshold is not None:
            error_clipping_threshold = float(error_clipping_threshold)
            if error_clipping_threshold < 0:
                raise ValueError("Error clipping must > 0")
            self.attr['error_clipping_threshold'] = error_clipping_threshold
        if drop_rate is not None:
            drop_rate = float(drop_rate)
            if drop_rate < 0:
                raise ValueError("Dropout rate must > 0")
Z
zhangjinchao01 已提交
227 228
            self.attr["drop_rate"] = drop_rate

229 230 231
        if isinstance(device, int):
            self.attr["device"] = device

Z
zhangjinchao01 已提交
232 233 234 235
    def check(self, layer_name):
        for key in self.attr:
            if not hasattr(self, 'can_%s' % key) or \
                    not getattr(self, 'can_%s' % key):
Q
qijun 已提交
236 237
                raise NotImplementedError("Layer %s cannot support %s" %
                                          (layer_name, key))
Z
zhangjinchao01 已提交
238 239 240 241 242 243 244 245 246 247 248

    @staticmethod
    def to_kwargs(attr):
        if attr is None:
            return dict()
        else:
            return attr.attr


ParamAttr = ParameterAttribute
ExtraAttr = ExtraLayerAttribute