loss.py 26.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import paddle

17
# TODO: define loss functions of neural network  
18
import numpy as np
19 20 21 22
import paddle
import paddle.fluid as fluid
from ...fluid.framework import core, in_dygraph_mode
from ...fluid.layers.nn import _elementwise_op_in_dygraph
23 24 25 26 27 28 29 30
from ...fluid.layers import bpr_loss  #DEFINE_ALIAS
from ...fluid.layers import center_loss  #DEFINE_ALIAS
from ...fluid.layers import cross_entropy  #DEFINE_ALIAS
from ...fluid.layers import dice_loss  #DEFINE_ALIAS
from ...fluid.layers import iou_similarity  #DEFINE_ALIAS
from ...fluid.layers import log_loss  #DEFINE_ALIAS
from ...fluid.layers import npair_loss  #DEFINE_ALIAS
from ...fluid.layers import rank_loss  #DEFINE_ALIAS
31
from ...fluid.layers import reshape
32 33 34 35 36 37 38 39
from ...fluid.layers import sigmoid_cross_entropy_with_logits  #DEFINE_ALIAS
from ...fluid.layers import sigmoid_focal_loss  #DEFINE_ALIAS
from ...fluid.layers import smooth_l1  #DEFINE_ALIAS
from ...fluid.layers import softmax_with_cross_entropy  #DEFINE_ALIAS
from ...fluid.layers import square_error_cost  #DEFINE_ALIAS
from ...fluid.layers import ssd_loss  #DEFINE_ALIAS
from ...fluid.layers import teacher_student_sigmoid_loss  #DEFINE_ALIAS

40 41 42
from ...fluid.layers import edit_distance  #DEFINE_ALIAS
from ...fluid.layers import huber_loss  #DEFINE_ALIAS
from ...fluid.layers import sampled_softmax_with_cross_entropy  #DEFINE_ALIAS
43
from ...fluid.layer_helper import LayerHelper
44
from ...fluid.framework import in_dygraph_mode
45
from ...fluid.framework import Variable
46

47 48 49 50 51
__all__ = [
    'bpr_loss',
    'center_loss',
    'cross_entropy',
    'dice_loss',
52 53
    'edit_distance',
    'huber_loss',
54
    'iou_similarity',
55
    'kl_div',
56
    'l1_loss',
57 58
    'log_loss',
    'mse_loss',
59
    'margin_ranking_loss',
60
    #       'nce',
61
    'nll_loss',
62 63
    'npair_loss',
    'rank_loss',
64
    'sampled_softmax_with_cross_entropy',
65 66 67
    'sigmoid_cross_entropy_with_logits',
    'sigmoid_focal_loss',
    'smooth_l1',
68
    'smooth_l1_loss',
69 70 71 72 73
    'softmax_with_cross_entropy',
    'square_error_cost',
    'ssd_loss',
    'teacher_student_sigmoid_loss'
]
74 75


76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
def smooth_l1_loss(input, label, reduction='mean', delta=1.0, name=None):
    """
    This operator calculates smooth_l1_loss. Creates a criterion that uses a squared
    term if the absolute element-wise error falls below 1 and an L1 term otherwise.
    In some cases it can prevent exploding gradients and it is more robust and less
    sensitivity to outliers. Also known as the Huber loss:

    .. math::

         loss(x,y)=\\frac{1}{n}\\sum_{i}z_i


    where z_i is given by:

    .. math::

         \\mathop{z_i}=\\left\\{\\begin{array}{rcl}
        0.5(x_i - y_i)^2 & & {if |x_i - y_i| < delta} \\\\
        delta * |x_i - y_i| - 0.5 * delta^2 & & {otherwise}
        \\end{array} \\right.

    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64. Shape is
            (N, C), where C is number of classes, and if shape is more than 2D, this
            is (N, C, D1, D2,..., Dk), k >= 1.
        label (Tensor): Label tensor, the data type is float32 or float64. The shape of label
            is the same as the shape of input.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
        delta (float, optional): Specifies the hyperparameter delta to be used. 
            The value determines how large the errors need to be to use L1. Errors
            smaller than delta are minimized with L2. Parameter is ignored for
            negative/zero values. Default = 1.0
        name (str, optional): Name for the operation (optional, default is
            None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        The tensor variable storing the smooth_l1_loss of input and label.

    Return type: Tensor.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            paddle.disable_static()
            input_data = np.random.rand(3,3).astype("float32")
            label_data = np.random.rand(3,3).astype("float32")
            input = paddle.to_tensor(input_data)
            label = paddle.to_tensor(label_data)
            output = paddle.nn.functioanl.smooth_l1_loss(input, label)
            print(output.numpy())
    """
    fluid.data_feeder.check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'smooth_l1_loss')
    fluid.data_feeder.check_variable_and_dtype(
        label, 'label', ['float32', 'float64'], 'smooth_l1_loss')

    out = huber_loss(input=input, label=label, delta=delta)

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in smooth_l1_loss should be 'sum', 'mean' or"
            " 'none', but received %s, which is not allowed." % reduction)
    if reduction == 'none':
        return out
    elif reduction == 'mean':
        return fluid.layers.reduce_mean(out)
    elif reduction == 'sum':
        return fluid.layers.reduce_sum(out)


154 155
def margin_ranking_loss(input,
                        other,
156
                        label,
157 158 159 160 161
                        margin=0.0,
                        reduction='mean',
                        name=None):
    """

162
    This op the calcluate the the margin rank loss between the input, other and label, use the math function as follows. 
163 164

    .. math:: 
165
        margin\_rank\_loss = max(0, -label * (input - other) + margin)
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181

    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:

    .. math::
        Out = MEAN(margin\_rank\_loss)

    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:

    .. math::
        Out = SUM(margin\_rank\_loss)

    If :attr:`reduction` set to ``'none'``, just return the origin ``margin_rank_loss``.

    Parameters:
        input(Tensor): the first input tensor, it's data type should be float32, float64.
        other(Tensor): the second input tensor, it's data type should be float32, float64.
182
        label(Tensor): the label value corresponding to input, it's data type should be float32, float64. 
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
        margin (float, optional): The margin value to add, default value is 0;
        reduction (str, optional): Indicate the reduction to apply to the loss, the candicates are ``'none'``, ``'mean'``, ``'sum'``.If :attr:`reduction` is ``'none'``, the unreduced loss is returned; If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned. If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned. Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns: Tensor, if :attr:`reduction` is ``'mean'`` or ``'sum'``, the out shape is :math:`[1]`, otherwise the shape is the same as `input` .The same dtype as input tensor.

    Examples:

        .. code-block:: python

            import numpy as np 
            import paddle 
            
            paddle.disable_static()
             
198 199 200 201
            input = paddle.to_variable(np.array([[1, 2], [3, 4]]).astype('float32'))
            other = paddle.to_variable(np.array([[2, 1], [2, 4]]).astype('float32'))
            label = paddle.to_variable(np.array([[1, -1], [-1, -1]]).astype('float32'))
            loss = paddle.nn.functional.margin_ranking_loss(input, other, label) 
202 203 204 205
            print(loss.numpy()) # [0.75]
    """
    if fluid.framework.in_dygraph_mode():
        out = core.ops.elementwise_sub(other, input)
206
        out = core.ops.elementwise_mul(out, label)
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
        if margin != 0.0:
            margin = fluid.dygraph.base.to_variable([margin], dtype=out.dtype)
            out = core.ops.elementwise_add(out, margin)
        out = core.ops.relu(out)
        if reduction == 'sum':
            return core.ops.reduce_sum(out, 'reduce_all', True)
        elif reduction == 'mean':
            return core.ops.mean(out)
        return out

    helper = LayerHelper("margin_ranking_loss", **locals())
    fluid.data_feeder.check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'margin_rank_loss')
    fluid.data_feeder.check_variable_and_dtype(
        other, 'other', ['float32', 'float64'], 'margin_rank_loss')
    fluid.data_feeder.check_variable_and_dtype(
223
        label, 'label', ['float32', 'float64'], 'margin_rank_loss')
224 225

    out = paddle.elementwise_sub(other, input)
226
    out = paddle.multiply(out, label)
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257

    if margin != 0.0:
        margin_var = out.block.create_var(dtype=out.dtype)
        paddle.fill_constant([1], out.dtype, margin, out=margin_var)
        out = paddle.add(out, margin_var)

    result_out = helper.create_variable_for_type_inference(input.dtype)

    if reduction == 'none':
        helper.append_op(
            type="relu", inputs={"X": out}, outputs={"Out": result_out})
        return result_out
    elif reduction == 'sum':
        out = paddle.nn.functional.relu(out)
        attrs = {"dim": [0], "keep_dim": False, "reduce_all": True}
        helper.append_op(
            type="reduce_sum",
            inputs={"X": out},
            outputs={"Out": result_out},
            attrs=attrs)
        return result_out
    elif reduction == 'mean':
        out = paddle.nn.functional.relu(out)
        helper.append_op(
            type="mean",
            inputs={"X": out},
            outputs={"Out": result_out},
            attrs={})
        return result_out


258
def l1_loss(input, label, reduction='mean', name=None):
259
    """
260
    This operator computes the L1 Loss of Tensor ``input`` and ``label`` as follows.
261

262
    If `reduction` set to ``'none'``, the loss is:
263 264

    .. math::
265
        Out = \lvert input - label\rvert
266

267
    If `reduction` set to ``'mean'``, the loss is:
268 269

    .. math::
270
        Out = MEAN(\lvert input - label\rvert)
271

272
    If `reduction` set to ``'sum'``, the loss is:
273 274

    .. math::
275
        Out = SUM(\lvert input - label\rvert)
276 277 278

    
    Parameters:
279 280
        input (Tensor): The input tensor. The shapes is [N, *], where N is batch size and `*` means any number of additional dimensions. It's data type should be float32, float64, int32, int64.
        label (Tensor): label. The shapes is [N, *], same shape as ``input`` . It's data type should be float32, float64, int32, int64.
281 282
        reduction (str, optional): Indicate the reduction to apply to the loss, 
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
283 284 285
            If `reduction` is ``'none'``, the unreduced loss is returned; 
            If `reduction` is ``'mean'``, the reduced mean loss is returned. 
            If `reduction` is ``'sum'``, the reduced sum loss is returned. 
286 287 288
            Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
    Returns:
289 290 291
        Tensor, the L1 Loss of Tensor ``input`` and ``label``.
            If `reduction` is ``'none'``, the shape of output loss is [N, *], the same as ``input`` .
            If `reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [1].
292 293 294 295 296 297
    Examples:
        .. code-block:: python
            import paddle
            import numpy as np
            
            paddle.disable_static()
298
            input_data = np.array([[1.5, 0.8], [0.2, 1.3]]).astype("float32")
299
            label_data = np.array([[1.7, 1], [0.4, 0.5]]).astype("float32")
300
            input = paddle.to_variable(input_data)
301 302
            label = paddle.to_variable(label_data)

303
            l1_loss = paddle.nn.functional.l1_loss(input, label)
304 305 306
            print(l1_loss.numpy())  
            # [0.35]

307
            l1_loss = paddle.nn.functional.l1_loss(input, label, reduction='none')
308 309 310 311
            print(l1_loss.numpy())  
            # [[0.20000005 0.19999999]
            # [0.2        0.79999995]]

312
            l1_loss = paddle.nn.functional.l1_loss(input, label, reduction='sum')
313 314 315 316 317 318 319 320 321 322
            print(l1_loss.numpy())  
            # [1.4]
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in L1Loss should be 'sum', 'mean' or 'none', but "
            "received %s, which is not allowed." % reduction)

    if in_dygraph_mode():
        unreduced = _elementwise_op_in_dygraph(
323
            input, label, axis=-1, act='abs', op_name='elementwise_sub')
324 325 326 327 328 329 330 331 332
        if reduction == 'mean':
            return core.ops.mean(unreduced)
        elif reduction == 'sum':
            return core.ops.reduce_sum(unreduced, 'dim', [0], 'keep_dim', False,
                                       'reduce_all', True)
        else:
            return unreduced

    fluid.data_feeder.check_variable_and_dtype(
333
        input, 'input', ['float32', 'float64', 'int32', 'int64'], 'l1_loss')
334 335 336 337
    fluid.data_feeder.check_variable_and_dtype(
        label, 'label', ['float32', 'float64', 'int32', 'int64'], 'l1_loss')

    if reduction == 'sum':
338
        unreduced = paddle.elementwise_sub(input, label, act='abs')
339 340
        return paddle.sum(unreduced, name=name)
    elif reduction == 'mean':
341
        unreduced = paddle.elementwise_sub(input, label, act='abs')
342 343
        return paddle.mean(unreduced, name=name)
    else:
344
        return paddle.elementwise_sub(input, label, act='abs', name=name)
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453


def nll_loss(input,
             label,
             weight=None,
             ignore_index=-100,
             reduction='mean',
             name=None):
    """
    This api returns negative log likelihood.
    See more detail in :ref:`api_nn_loss_NLLLoss` .

    Parameters:
         input (Tensor): Input tensor, the shape is :math:`[N, C]`, `C` is the number of classes.
             But in K-dimension situation, the shape is :math:`[N, C, d_1, d_2, ..., d_K]`.
             The data type is float32, float64.
         label (Tensor): Label tensor, the shape is :math:`[N,]` or :math:`[N, d_1, d_2, ..., d_K]`.
             The data type is int64.
         weight (Tensor, optional): Weight tensor, a manual rescaling weight given
             to each class. If given, it has to be a 1D Tensor whose size is `[C, ]`. Otherwise,
             it treated as if having all ones. the data type is
             float32, float64, Default is ``'None'``.
         ignore_index (int64, optional): Specifies a target value that is ignored
             and does not contribute to the input gradient.
         reduction (str, optional): Indicate how to average the loss,
             the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
             If `reduction` is ``'mean'``, the reduced mean loss is returned;
             if `reduction` is ``'sum'``, the reduced sum loss is returned;
             if `reduction` is ``'none'``, no reduction will be apllied.
             Default is ``'mean'``.
         name (str, optional): Name for the operation (optional, default is None).
             For more information, please refer to :ref:`api_guide_Name`.

    Returns:
         `Tensor`, the value of negative log likelihood loss.

    Examples:
        .. code-block:: python
                import paddle
                import numpy as np
                from paddle.nn.functional import nll_loss
                log_softmax = paddle.nn.LogSoftmax(axis=1)

                input_np = np.array([[0.88103855, 0.9908683 , 0.6226845 ],
                                     [0.53331435, 0.07999352, 0.8549948 ],
                                     [0.25879037, 0.39530203, 0.698465  ],
                                     [0.73427284, 0.63575995, 0.18827209],
                                     [0.05689114, 0.0862954 , 0.6325046 ]]).astype(np.float32)
                label_np = np.array([0, 2, 1, 1, 0]).astype(np.int64)

                place = paddle.CPUPlace()
                paddle.disable_static(place)
                input = paddle.to_variable(input_np)
                log_out = log_softmax(input)
                label = paddle.to_variable(label_np)
                result = nll_loss(log_out, label)
                print(result.numpy()) # [1.0720209]
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in nll_loss should be 'sum', 'mean' or "
            "'none', but received %s, which is not allowed." % reduction)

    input_shape = list(input.shape)
    input_dims = len(input_shape)
    if input_dims < 2:
        raise ValueError('Expected 2 or more dimensions (got {})'.format(
            input_dims))
    n = input_shape[0]
    c = input_shape[1]
    if in_dygraph_mode():
        if input_dims != 2 and input_dims != 4:
            input, _ = core.ops.reshape2(input, 'shape', [n, c, 1, -1])
            label, _ = core.ops.reshape2(label, 'shape', [n, 1, -1])
            out_shape = [n] + input_shape[2:]
        out, total_weight = core.ops.nll_loss(input, label, weight,
                                              'ignore_index', ignore_index,
                                              'reduction', reduction)
        if input_dims != 2 and input_dims != 4 and reduction == 'none':
            out, _ = core.ops.reshape2(out, 'shape', out_shape)
        return out

    helper = LayerHelper('nll_loss', **locals())

    if input_dims != 2 and input_dims != 4:
        input = reshape(input, shape=[n, c, 1, -1])
        label = reshape(label, shape=[n, 1, -1])
        out_shape = [n] + input_shape[2:]

    fluid.data_feeder.check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'nll_loss')
    fluid.data_feeder.check_variable_and_dtype(label, 'label', ['int64'],
                                               'nll_loss')
    inputs = {'X': input, 'Label': label}
    attrs = {'reduction': reduction, 'ignore_index': ignore_index}
    if weight is not None:
        if isinstance(weight, Variable):
            inputs['Weight'] = weight

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    total_weight = helper.create_variable_for_type_inference(dtype=input.dtype)
    outputs = {'Out': out, 'Total_weight': total_weight}

    helper.append_op(
        type='nll_loss', inputs=inputs, outputs=outputs, attrs=attrs)
    if input_dims != 2 and input_dims != 4 and reduction == 'none':
        out = reshape(out, shape=out_shape)

    return out
454 455


456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
def kl_div(input, label, reduction='mean', name=None):
    """
    This operator calculates the Kullback-Leibler divergence loss
    between Input(X) and Input(Target). Notes that Input(X) is the
    log-probability and Input(Target) is the probability.

    KL divergence loss is calculated as follows:

    $$l(x, y) = y * (\log(y) - x)$$

    While :math:`x` is input and :math:`y` is label.

    While :attr:`reduction` is :attr:`none`, output loss is in
    the same shape as input, loss in each point is calculated 
    seperately and no reduction is applied.
    
    While :attr:`reduction` is :attr:`mean`, output loss is in
    shape of [1] and loss value is the mean value of all losses.
    
    While :attr:`reduction` is :attr:`sum`, output loss is in
    shape of [1] and loss value is the sum value of all losses.
    
    While :attr:`reduction` is :attr:`batchmean`, output loss is 
    in shape of [1] and loss value is the sum value of all losses
    divided by batch size.

    Args:
        input (Tensor): The input tensor. The shapes is [N, *], where N is batch size and `*` means 
             any number of additional dimensions. It's data type should be float32, float64.
        label (Tensor): label. The shapes is [N, *], same shape as ``input`` . It's data type should be float32, float64.
        reduction (Tensor): Indicate how to average the loss,
             the candicates are ``'none'`` | ``'batchmean'`` | ``'mean'`` | ``'sum'``.
             If `reduction` is ``'mean'``, the reduced mean loss is returned;
             If `reduction` is ``'batchmean'``, the sum loss divided by batch size is returned;
             if `reduction` is ``'sum'``, the reduced sum loss is returned;
             if `reduction` is ``'none'``, no reduction will be apllied.
             Default is ``'mean'``.
        name(str, optional): Name for the operation (optional, default is None). For more information, 
            please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The KL divergence loss. The data type is same as input tensor

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            import paddle.nn.functional as F
            
            paddle.enable_imperative()
            
            shape = (5, 20)
            input = np.random.uniform(-10, 10, shape).astype('float32')
            target = np.random.uniform(-10, 10, shape).astype('float32')

            # 'batchmean' reduction, loss shape will be [N]
            pred_loss = F.kl_div(paddle.to_variable(input),
                                 paddle.to_variable(target), reduction='batchmean')
            # shape=[5]
            
            # 'mean' reduction, loss shape will be [1]
            pred_loss = F.kl_div(paddle.to_variable(input),
                                 paddle.to_variable(target), reduction='mean')
            # shape=[1]

            # 'sum' reduction, loss shape will be [1]
            pred_loss = F.kl_div(paddle.to_variable(input),
                                 paddle.to_variable(target), reduction='sum')
            # shape=[1]

            # 'none' reduction, loss shape is same with input shape
            pred_loss = F.kl_div(paddle.to_variable(input),
                                 paddle.to_variable(target), reduction='none')
            # shape=[5, 20]

    """
    if paddle.in_dynamic_mode():
        out = core.ops.kldiv_loss(input, label, 'reduction', reduction)
        return out

    helper = LayerHelper('kl_div', **locals())

    fluid.data_feeder.check_variable_and_dtype(input, 'input',
                                               ['float32', 'float64'], 'kl_div')
    fluid.data_feeder.check_variable_and_dtype(label, 'label',
                                               ['float32', 'float64'], 'kl_div')
    fluid.data_feeder.check_type(reduction, 'reduction', str, 'kl_div')

    loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='kldiv_loss',
        inputs={'X': input,
                'Target': label},
        outputs={'Loss': loss},
        attrs={'reduction': reduction})
    return loss


555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
def mse_loss(input, label, reduction='mean', name=None):
    """
    This op accepts input predications and label and returns the mean square error.

    If :attr:`reduction` is set to ``'none'``, loss is calculated as:

    .. math::
        Out = (input - label)^2

    If :attr:`reduction` is set to ``'mean'``, loss is calculated as:

    .. math::
        Out = \operatorname{mean}((input - label)^2)

    If :attr:`reduction` is set to ``'sum'``, loss is calculated as:

    .. math::
        Out = \operatorname{sum}((input - label)^2)

    Parameters:
        input (Tensor): Input tensor, the data type should be float32 or float64.
        label (Tensor): Label tensor, the data type should be float32 or float64.
        reduction (string, optional): The reduction method for the output,
            could be 'none' | 'mean' | 'sum'.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned.
            If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.


    Returns:
        Tensor: The tensor tensor storing the mean square error difference of input and label.

    Return type: Tensor.
    
    Examples:

        .. code-block:: python
            import numpy as np
            import paddle


            # static graph mode
            paddle.enable_static()
            mse_loss = paddle.nn.loss.MSELoss()
            input = paddle.data(name="input", shape=[1])
            label = paddle.data(name="label", shape=[1])
            place = paddle.CPUPlace()
            input_data = np.array([1.5]).astype("float32")
            label_data = np.array([1.7]).astype("float32")

            output = mse_loss(input,label)
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
            output_data = exe.run(
                paddle.static.default_main_program(),
                feed={"input":input_data, "label":label_data},
                fetch_list=[output],
                return_numpy=True)
            print(output_data)
            # [array([0.04000002], dtype=float32)]

            # dynamic graph mode
            paddle.disable_static()
            input = paddle.to_variable(input_data)
            label = paddle.to_variable(label_data)
            output = mse_loss(input, label)
            print(output.numpy())
            # [0.04000002]

    """

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'mse_loss' should be 'sum', 'mean' or 'none', "
            "but received {}.".format(reduction))

    if not paddle.fluid.framework.in_dygraph_mode():
        paddle.fluid.data_feeder.check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'mse_loss')
        paddle.fluid.data_feeder.check_variable_and_dtype(
            label, 'label', ['float32', 'float64'], 'mse_loss')

    if reduction == 'none':
        return paddle.fluid.layers.square(
            paddle.fluid.layers.elementwise_sub(input, label), name=name)
    elif reduction == 'mean':
        return paddle.mean(
            paddle.fluid.layers.square(
                paddle.fluid.layers.elementwise_sub(input, label)),
            name=name)
    else:
        return paddle.sum(paddle.fluid.layers.square(
            paddle.fluid.layers.elementwise_sub(input, label)),
                          name=name)