prepared_operator.cc 9.8 KB
Newer Older
J
Jiabin Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/prepared_operator.h"
16

17
#include "paddle/fluid/framework/data_type_transform.h"
18
#include "paddle/fluid/framework/details/nan_inf_utils.h"
19
#include "paddle/fluid/imperative/infer_shape_context.h"
Q
QingshuChen 已提交
20 21 22
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/platform/xpu/xpu_op_list.h"
#endif
23 24
DECLARE_bool(check_nan_inf);

J
Jiabin Yang 已提交
25 26 27
namespace paddle {
namespace imperative {

28 29 30 31 32 33 34 35 36 37
const std::shared_ptr<VariableWrapper>& GetVariableWrapper(
    const std::shared_ptr<paddle::imperative::VarBase>& var) {
  return var->SharedVar();
}

const std::shared_ptr<VariableWrapper>& GetVariableWrapper(
    const std::shared_ptr<VariableWrapper>& var) {
  return var;
}

J
Jiabin Yang 已提交
38 39 40 41 42 43 44 45 46 47
const framework::Tensor* GetTensorFromVar(const framework::Variable& var) {
  if (var.IsType<framework::LoDTensor>()) {
    return &(var.Get<framework::LoDTensor>());
  } else if (var.IsType<framework::SelectedRows>()) {
    return &(var.Get<framework::SelectedRows>().value());
  } else {
    return nullptr;
  }
}

48
template <typename VarType>
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
static void HandleComplexGradToRealGrad(const NameVarMap<VarType>& outs) {
  for (auto& pair : outs) {
    for (auto& var : pair.second) {
      if (var == nullptr) {
        continue;
      }
      if (var->ForwardDataType() ==
          static_cast<framework::proto::VarType::Type>(-1)) {
        VLOG(6) << "Var (" << var->Name()
                << ")'s forward data type is not set.";
        continue;
      }
      if (!framework::IsComplexType(var->DataType()) ||
          framework::IsComplexType(var->ForwardDataType())) {
        continue;
      }
      const auto* tensor = GetTensorFromVar(var->Var());
J
Jiabin Yang 已提交
66
      if (tensor && tensor->IsInitialized()) {
67 68 69 70 71 72 73 74
        VLOG(6) << "Transform " << framework::DataTypeToString(var->DataType())
                << " var `" << var->Name() << "` to "
                << framework::DataTypeToString(var->ForwardDataType())
                << " real var in dynamic graph.";
        framework::Tensor out;
        framework::TransComplexToReal(var->ForwardDataType(), var->DataType(),
                                      *tensor, &out);
        SetTensorToVariable(var->Var(), out, var->MutableVar());
J
Jiabin Yang 已提交
75 76 77 78 79 80 81
      }
    }
  }
}

PreparedOp::PreparedOp(const framework::OperatorBase& op,
                       const framework::RuntimeContext& ctx,
82
                       const framework::OpKernelType& kernel_type,
83
                       const framework::OperatorWithKernel::OpKernelFunc& func,
84
                       platform::DeviceContext* dev_ctx)
85 86 87 88 89 90
    : op_(op),
      ctx_(ctx),
      kernel_type_(kernel_type),
      func_(func),
      dev_ctx_(dev_ctx) {}

91 92 93 94 95
template <typename VarType>
PreparedOp PrepareImpl(const NameVarMap<VarType>& ins,
                       const NameVarMap<VarType>& outs,
                       const framework::OperatorWithKernel& op,
                       const platform::Place& place,
96 97
                       const framework::AttributeMap& attrs,
                       const framework::AttributeMap& default_attrs) {
98
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
99
  auto* dev_ctx = pool.Get(place);
100

101 102 103 104 105 106 107 108
  framework::RuntimeContext ctx({}, {});

#ifdef PADDLE_WITH_MKLDNN
  // MKLDNN variant of code reads attributes in some of GetKernelTypeForVar and
  // GetKernelType functions, so we need to copy the attributes there.
  // Const qualifier of Attrs had to be discarded to overwrite it.
  if (FLAGS_use_mkldnn) {
    auto& mutable_op_attrs = const_cast<framework::AttributeMap&>(op.Attrs());
109 110 111 112
    mutable_op_attrs = default_attrs;
    for (auto& attr : attrs) {
      mutable_op_attrs[attr.first] = attr.second;
    }
113 114
  }
#endif
J
Jiabin Yang 已提交
115

116
  // 1. get expected kernel key
117 118 119
  auto expected_kernel_key = op.GetExpectedKernelType(
      DygraphExecutionContext<VarType>(op, framework::Scope(), *dev_ctx, ctx,
                                       ins, outs, attrs, default_attrs));
120 121 122
  VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

  // 2. check if op[type] has kernel registered.
J
Jiabin Yang 已提交
123 124
  auto& all_op_kernels = op.AllOpKernels();
  auto kernels_iter = all_op_kernels.find(op.Type());
125 126 127 128 129
  PADDLE_ENFORCE_NE(
      kernels_iter, all_op_kernels.end(),
      platform::errors::NotFound(
          "There are no kernels which are registered in the %s operator.",
          op.Type()));
J
Jiabin Yang 已提交
130 131 132

  auto& kernels = kernels_iter->second;
  auto kernel_iter = kernels.find(expected_kernel_key);
133
#ifdef PADDLE_WITH_XPU
134 135 136 137
  if ((kernel_iter == kernels.end() &&
       is_xpu_place(expected_kernel_key.place_) &&
       !paddle::platform::is_xpu_support_op(op.Type(), expected_kernel_key)) ||
      paddle::platform::is_in_xpu_black_list(op.Type())) {
138 139 140
    VLOG(3) << "missing XPU kernel: " << op.Type()
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
141 142 143
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
144 145 146 147
#endif
#ifdef PADDLE_WITH_ASCEND_CL
  if (kernel_iter == kernels.end() &&
      is_npu_place(expected_kernel_key.place_)) {
148 149 150
    VLOG(3) << "missing NPU kernel: " << op.Type()
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
151 152 153
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
154
#endif
J
Jiabin Yang 已提交
155
  // TODO(jiabin): Add operator.cc's line 1000 part back when we need that case
156 157 158 159
  PADDLE_ENFORCE_NE(kernel_iter, kernels.end(),
                    platform::errors::NotFound(
                        "Operator %s does not have kernel for %s.", op.Type(),
                        KernelTypeToString(expected_kernel_key)));
160

161 162 163 164
  if (!(expected_kernel_key.place_ == place)) {
    dev_ctx = pool.Get(expected_kernel_key.place_);
  }

165
  return PreparedOp(op, ctx, expected_kernel_key, kernel_iter->second, dev_ctx);
166 167
}

168 169 170 171
PreparedOp PreparedOp::Prepare(const NameVarMap<VarBase>& ins,
                               const NameVarMap<VarBase>& outs,
                               const framework::OperatorWithKernel& op,
                               const platform::Place& place,
172 173 174
                               const framework::AttributeMap& attrs,
                               const framework::AttributeMap& default_attrs) {
  return PrepareImpl<VarBase>(ins, outs, op, place, attrs, default_attrs);
175 176 177 178 179 180
}

PreparedOp PreparedOp::Prepare(const NameVarMap<VariableWrapper>& ins,
                               const NameVarMap<VariableWrapper>& outs,
                               const framework::OperatorWithKernel& op,
                               const platform::Place& place,
181 182 183 184
                               const framework::AttributeMap& attrs,
                               const framework::AttributeMap& default_attrs) {
  return PrepareImpl<VariableWrapper>(ins, outs, op, place, attrs,
                                      default_attrs);
185 186
}

187 188 189
template <typename VarType>
static void PreparedOpRunImpl(
    const framework::OperatorBase& op, const framework::RuntimeContext& ctx,
190
    const framework::OpKernelType& kernel_type,
191
    const framework::OperatorWithKernel::OpKernelFunc& func,
192
    platform::DeviceContext* dev_ctx, const NameVarMap<VarType>& ins,
193 194
    const NameVarMap<VarType>& outs, const framework::AttributeMap& attrs,
    const framework::AttributeMap& default_attrs) {
J
Jiabin Yang 已提交
195 196
  // TODO(zjl): remove scope in dygraph
  framework::Scope scope;
H
hong 已提交
197

198
  DygraphInferShapeContext<VarType> infer_shape_ctx(&ins, &outs, &attrs,
199
                                                    &default_attrs, op.Type());
200 201
  static_cast<const framework::OperatorWithKernel&>(op).InferShape(
      &infer_shape_ctx);
H
hong 已提交
202

203
  func(DygraphExecutionContext<VarType>(op, scope, *dev_ctx, ctx, ins, outs,
204
                                        attrs, default_attrs));
205

206 207 208 209 210
  if (FLAGS_check_nan_inf) {
    framework::details::CheckOpHasNanOrInfInDygraph<VarType>(
        op.Type(), outs, dev_ctx->GetPlace());
  }

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
  /**
   * [ Why need handle complex gradient to real gradient? ]
   *
   * After the introduction of complex number calculations, Ops that support
   * complex number calculations generally support type promotion, such as
   * x(float32) + y(complex64) = out(complex64), then the type of the grad
   * tensor should be dout(complex64), dx(float32), dy (complex64).
   *
   * But because the dout is complex64, the dx is also complex64 after
   * grad op kernel executed, we need to recognize this situation and
   * convert dx to float32 type. HandleComplexGradToRealGrad does this thing.
   */
  if (framework::IsComplexType(kernel_type.data_type_)) {
    HandleComplexGradToRealGrad<VarType>(outs);
  }
226
}
H
hong 已提交
227

228 229
void PreparedOp::Run(const NameVarMap<VarBase>& ins,
                     const NameVarMap<VarBase>& outs,
230 231
                     const framework::AttributeMap& attrs,
                     const framework::AttributeMap& default_attrs) {
232
  PreparedOpRunImpl<VarBase>(op_, ctx_, kernel_type_, func_, dev_ctx_, ins,
233
                             outs, attrs, default_attrs);
234
}
H
hong 已提交
235

236 237
void PreparedOp::Run(const NameVarMap<VariableWrapper>& ins,
                     const NameVarMap<VariableWrapper>& outs,
238 239
                     const framework::AttributeMap& attrs,
                     const framework::AttributeMap& default_attrs) {
240
  PreparedOpRunImpl<VariableWrapper>(op_, ctx_, kernel_type_, func_, dev_ctx_,
241
                                     ins, outs, attrs, default_attrs);
J
Jiabin Yang 已提交
242 243 244 245
}

}  // namespace imperative
}  // namespace paddle