elementwise_mul_op.h 2.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#pragma once
16
#include "paddle/fluid/operators/elementwise_op.h"
Y
Yi Wang 已提交
17
#include "paddle/fluid/operators/elementwise_op_function.h"
18 19 20
namespace paddle {
namespace operators {

21 22 23 24 25
template <typename T>
struct MulFunctor {
  inline HOSTDEVICE T operator()(T a, T b) const { return a * b; }
};

Q
QI JUN 已提交
26
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
27
class ElementwiseMulKernel : public framework::OpKernel<T> {
28 29
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduoZH 已提交
30 31 32 33 34 35 36
    using Tensor = framework::Tensor;

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* z = ctx.Output<Tensor>("Out");
    z->mutable_data<T>(ctx.GetPlace());
    int axis = ctx.Attr<int>("axis");
C
chengduoZH 已提交
37 38
    ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
                                                          MulFunctor<T>(), z);
G
gongweibao 已提交
39 40
  }
};
41

G
gongweibao 已提交
42
template <typename T>
C
chengduoZH 已提交
43
struct MulGradDX {
C
chengduoZH 已提交
44
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout * y; }
45 46
};

G
gongweibao 已提交
47
template <typename T>
C
chengduoZH 已提交
48
struct MulGradDY {
C
chengduoZH 已提交
49
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout * x; }
G
gongweibao 已提交
50
};
C
chengduoZH 已提交
51

Q
QI JUN 已提交
52
template <typename DeviceContext, typename T>
53
class ElementwiseMulGradKernel : public ElemwiseGradKernel<T> {
G
gongweibao 已提交
54 55
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
56
    ElemwiseGradKernel<T>::Compute(ctx);
C
chengduoZH 已提交
57 58 59 60 61 62 63 64 65
    using Tensor = framework::Tensor;

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* out = ctx.Input<Tensor>("Out");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
    int axis = ctx.Attr<int>("axis");
C
chengduoZH 已提交
66 67
    ElemwiseGradCompute<DeviceContext, T, MulGradDX<T>, MulGradDY<T>>(
        ctx, *x, *y, *out, *dout, axis, dx, dy, MulGradDX<T>(), MulGradDY<T>());
G
gongweibao 已提交
68 69
  }
};
70 71
}  // namespace operators
}  // namespace paddle