hl_cuda_cublas.cc 13.0 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <sys/time.h>
#include <mutex>
L
lzhao4ever 已提交
17
#include "hl_cuda.h"
Z
zhangjinchao01 已提交
18 19 20 21 22 23 24 25
#include "hl_cuda_cublas.h"
#include "hl_thread.ph"
#include "hl_dso_loader.h"
#include "paddle/utils/Logging.h"

namespace dynload {

std::once_flag cublas_dso_flag;
26
void *cublas_dso_handle = nullptr;
Z
zhangjinchao01 已提交
27 28 29 30 31 32 33 34 35

/**
 * The following macro definition can generate structs
 * (for each function) to dynamic load cublas routine
 * via operator overloading.
 *
 * note: default dynamic linked libs
 */
#ifdef PADDLE_USE_DSO
36 37 38 39 40 41 42 43 44
#define DYNAMIC_LOAD_CUBLAS_WRAP(__name)                                       \
  struct DynLoad__##__name {                                                   \
    template <typename... Args>                                                \
    cublasStatus_t operator()(Args... args) {                                  \
      typedef cublasStatus_t (*cublasFunc)(Args...);                           \
      std::call_once(cublas_dso_flag, GetCublasDsoHandle, &cublas_dso_handle); \
      void *p_##__name = dlsym(cublas_dso_handle, #__name);                    \
      return reinterpret_cast<cublasFunc>(p_##__name)(args...);                \
    }                                                                          \
Z
zhangjinchao01 已提交
45 46
  } __name;  // struct DynLoad__##__name
#else
47 48 49 50 51 52
#define DYNAMIC_LOAD_CUBLAS_WRAP(__name)      \
  struct DynLoad__##__name {                  \
    template <typename... Args>               \
    cublasStatus_t operator()(Args... args) { \
      return __name(args...);                 \
    }                                         \
Z
zhangjinchao01 已提交
53 54 55
  } __name;  // struct DynLoad__##__name
#endif

56
#define DYNAMIC_LOAD_CUBLAS_V2_WRAP(__name) DYNAMIC_LOAD_CUBLAS_WRAP(__name)
Z
zhangjinchao01 已提交
57 58

// include all needed cublas functions in HPPL
L
Luo Tao 已提交
59 60 61 62 63 64 65 66
// clang-format off
#define CUBLAS_BLAS_ROUTINE_EACH(__macro) \
  __macro(cublasSgemv)                    \
  __macro(cublasDgemv)                    \
  __macro(cublasSgemm)                    \
  __macro(cublasDgemm)                    \
  __macro(cublasSgeam)                    \
  __macro(cublasDgeam)                    \
Z
zhangjinchao01 已提交
67 68 69 70 71 72 73 74 75 76

DYNAMIC_LOAD_CUBLAS_V2_WRAP(cublasCreate)
DYNAMIC_LOAD_CUBLAS_V2_WRAP(cublasDestroy)
DYNAMIC_LOAD_CUBLAS_V2_WRAP(cublasSetStream)
DYNAMIC_LOAD_CUBLAS_V2_WRAP(cublasSetPointerMode)
DYNAMIC_LOAD_CUBLAS_V2_WRAP(cublasGetPointerMode)
DYNAMIC_LOAD_CUBLAS_WRAP(cublasSgemmBatched)
DYNAMIC_LOAD_CUBLAS_WRAP(cublasDgemmBatched)
DYNAMIC_LOAD_CUBLAS_WRAP(cublasCgemmBatched)
DYNAMIC_LOAD_CUBLAS_WRAP(cublasZgemmBatched)
L
lzhao4ever 已提交
77 78
DYNAMIC_LOAD_CUBLAS_WRAP(cublasSgetrfBatched)
DYNAMIC_LOAD_CUBLAS_WRAP(cublasSgetriBatched)
79 80
DYNAMIC_LOAD_CUBLAS_WRAP(cublasDgetrfBatched)
DYNAMIC_LOAD_CUBLAS_WRAP(cublasDgetriBatched)
Z
zhangjinchao01 已提交
81 82 83 84 85 86 87 88
CUBLAS_BLAS_ROUTINE_EACH(DYNAMIC_LOAD_CUBLAS_V2_WRAP)

#undef DYNAMIC_LOAD_CUBLAS_WRAP
#undef DYNAMIC_LOAD_CUBLAS_V2_WRAP
#undef CUBLAS_BLAS_ROUTINE_EACH

} /* namespace dynload */

L
Luo Tao 已提交
89
// clang-format on
90
#ifndef PADDLE_TYPE_DOUBLE
91 92 93 94 95
#define CUBLAS_GEAM dynload::cublasSgeam
#define CUBLAS_GEMV dynload::cublasSgemv
#define CUBLAS_GEMM dynload::cublasSgemm
#define CUBLAS_GETRF dynload::cublasSgetrfBatched
#define CUBLAS_GETRI dynload::cublasSgetriBatched
Z
zhangjinchao01 已提交
96
#else
97 98 99 100 101
#define CUBLAS_GEAM dynload::cublasDgeam
#define CUBLAS_GEMV dynload::cublasDgemv
#define CUBLAS_GEMM dynload::cublasDgemm
#define CUBLAS_GETRF dynload::cublasDgetrfBatched
#define CUBLAS_GETRI dynload::cublasDgetriBatched
Z
zhangjinchao01 已提交
102 103
#endif

104
const char *hl_cublas_get_error_string(cublasStatus_t status) {
105
  switch (status) {
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
    case CUBLAS_STATUS_NOT_INITIALIZED:
      return "[cublas status]: not initialized";
    case CUBLAS_STATUS_ALLOC_FAILED:
      return "[cublas status]: allocate failed";
    case CUBLAS_STATUS_INVALID_VALUE:
      return "[cublas status]: invalid value";
    case CUBLAS_STATUS_ARCH_MISMATCH:
      return "[cublas status]: arch mismatch";
    case CUBLAS_STATUS_MAPPING_ERROR:
      return "[cublas status]: mapping error";
    case CUBLAS_STATUS_EXECUTION_FAILED:
      return "[cublas status]: execution failed";
    case CUBLAS_STATUS_INTERNAL_ERROR:
      return "[cublas status]: internal error";
    case CUBLAS_STATUS_SUCCESS:
      return "[cublas status]: success";
    default:
      return "[cublas status]: unknown error";
Z
zhangjinchao01 已提交
124 125 126 127 128 129 130 131
  }
}

/**
 * Check build-in cublas function using glog and it also
 * support << operator for more details error info.
 */
cublasStatus_t g_cublasStat;
132 133 134 135
#define CHECK_CUBLAS(cublas_func)               \
  g_cublasStat = cublas_func;                   \
  CHECK_EQ(CUBLAS_STATUS_SUCCESS, g_cublasStat) \
      << "Cublas Error: " << hl_cublas_get_error_string(g_cublasStat) << " "
Z
zhangjinchao01 已提交
136 137 138

void hl_cublas_init(cublasHandle_t *cublas_handle, cudaStream_t stream) {
  CHECK_CUBLAS(dynload::cublasCreate(cublas_handle))
139
      << "[cublas init] Cublas create handle faild!";
Z
zhangjinchao01 已提交
140 141

  CHECK_CUBLAS(dynload::cublasSetStream(*cublas_handle, stream))
142
      << "[cublas init] Cublas set stream faild!";
Z
zhangjinchao01 已提交
143 144
}

145 146
void hl_matrix_transpose(
    real *A_d, real *C_d, int dimM, int dimN, int lda, int ldc) {
Z
zhangjinchao01 已提交
147 148 149 150 151 152 153
  real alpha = 1.0;
  real beta = 0.0;

  CHECK_NOTNULL(A_d);
  CHECK_NOTNULL(C_d);

  CHECK_CUBLAS(CUBLAS_GEAM(t_resource.handle,
154 155 156 157 158 159 160 161 162 163 164 165
                           CUBLAS_OP_T,
                           CUBLAS_OP_N,
                           dimM,
                           dimN,
                           &alpha,
                           A_d,
                           lda,
                           &beta,
                           nullptr,
                           dimM,
                           C_d,
                           ldc));
Z
zhangjinchao01 已提交
166 167 168 169 170 171
  CHECK_SYNC("hl_matrix_transpose failed");
}

void hl_matrix_transpose(real *A_d, real *C_d, int dimM, int dimN) {
  hl_matrix_transpose(A_d, C_d, dimM, dimN, dimN, dimM);
}
L
lzhao4ever 已提交
172 173 174 175 176 177 178 179 180 181 182

void hl_matrix_inverse(real *A_d, real *C_d, int dimN, int lda, int ldc) {
  /* Solve Ax = I */
  CHECK_NOTNULL(A_d);
  CHECK_NOTNULL(C_d);

  /* Step 1: Compute the LU decomposition of matrix A */
  real **inout_h = &A_d;
  real **inout_d = (real **)hl_malloc_device(sizeof(real *));
  hl_memcpy(inout_d, inout_h, sizeof(real *));

183
  int *pivot_d = (int *)hl_malloc_device(dimN * sizeof(int));
L
lzhao4ever 已提交
184 185 186 187 188 189
  int *info_d = (int *)t_resource.gpu_mem;

  /* Note: cublasSgetrfBatched is used to calculate a number of
     small-sized matrices. There may be a better way to reconstruct
     the API for better performance.
   */
190 191
  CHECK_CUBLAS(
      CUBLAS_GETRF(t_resource.handle, dimN, inout_d, lda, pivot_d, info_d, 1));
L
lzhao4ever 已提交
192

193
  int info_h;
L
lzhao4ever 已提交
194 195
  hl_memcpy(&info_h, info_d, sizeof(int));
  if (info_h != 0) {
196
    LOG(FATAL) << "Factorization of matrix failed: matrix may be singular.\n";
L
lzhao4ever 已提交
197 198 199 200 201 202 203 204
  }

  /* Step 2: Compute the inverse of the matrix given its LU decomposition */
  real **out_h = &C_d;
  real **out_d = (real **)hl_malloc_device(sizeof(real *));
  hl_memcpy(out_d, out_h, sizeof(real *));

  CHECK_CUBLAS(CUBLAS_GETRI(t_resource.handle,
205 206 207 208 209 210 211 212
                            dimN,
                            (const real **)inout_d,
                            lda,
                            pivot_d,
                            out_d,
                            ldc,
                            info_d,
                            1));
L
lzhao4ever 已提交
213 214 215

  hl_memcpy(&info_h, info_d, sizeof(int));
  if (info_h != 0) {
216
    LOG(FATAL) << "Inversion of matrix failed: matrix may be singular.\n";
L
lzhao4ever 已提交
217 218 219 220 221
  }

  hl_free_mem_device(inout_d);
  hl_free_mem_device(pivot_d);
  hl_free_mem_device(out_d);
222

L
lzhao4ever 已提交
223 224
  CHECK_SYNC("hl_matrix_inverse failed");
}
Z
zhangjinchao01 已提交
225

226 227 228 229
void hl_matrix_mul(real *A_d,
                   hl_trans_op_t transa,
                   real *B_d,
                   hl_trans_op_t transb,
Z
zhangjinchao01 已提交
230
                   real *C_d,
231 232 233 234 235 236 237 238
                   int dimM,
                   int dimN,
                   int dimK,
                   real alpha,
                   real beta,
                   int lda,
                   int ldb,
                   int ldc) {
Z
zhangjinchao01 已提交
239 240 241 242 243 244 245
  CHECK_NOTNULL(A_d);
  CHECK_NOTNULL(B_d);
  CHECK_NOTNULL(C_d);

  if (dimN == 1 && dimM != 1 && dimK != 1 && transb == HPPL_OP_N) {
    int m = (transa == HPPL_OP_N) ? dimM : dimK;
    int n = (transa == HPPL_OP_N) ? dimK : dimM;
246 247
    hl_matrix_mul_vector(
        A_d, transa, B_d, C_d, m, n, alpha, beta, lda, ldb, ldc);
Z
zhangjinchao01 已提交
248 249 250 251 252 253 254
    return;
  }

  if (dimM == 1 && dimN != 1 && dimK != 1 && transa == HPPL_OP_N) {
    int m = (transb == HPPL_OP_N) ? dimK : dimN;
    int n = (transb == HPPL_OP_N) ? dimN : dimK;
    hl_trans_op_t trans = (transb == HPPL_OP_N) ? HPPL_OP_T : HPPL_OP_N;
255
    hl_matrix_mul_vector(B_d, trans, A_d, C_d, m, n, alpha, beta, ldb, 1, 1);
Z
zhangjinchao01 已提交
256 257 258 259 260 261 262 263
    return;
  }

  cublasStatus_t stat;
  if ((HPPL_OP_N == transa) && (HPPL_OP_N == transb)) {
    stat = CUBLAS_GEMM(t_resource.handle,
                       CUBLAS_OP_N,
                       CUBLAS_OP_N,
264 265 266 267 268 269 270 271 272 273 274
                       dimN,
                       dimM,
                       dimK,
                       &alpha,
                       B_d,
                       ldb,
                       A_d,
                       lda,
                       &beta,
                       C_d,
                       ldc);
Z
zhangjinchao01 已提交
275 276 277 278
  } else if ((HPPL_OP_T == transa) && (HPPL_OP_N == transb)) {
    stat = CUBLAS_GEMM(t_resource.handle,
                       CUBLAS_OP_N,
                       CUBLAS_OP_T,
279 280 281 282 283 284 285 286 287 288 289
                       dimN,
                       dimM,
                       dimK,
                       &alpha,
                       B_d,
                       ldb,
                       A_d,
                       lda,
                       &beta,
                       C_d,
                       ldc);
Z
zhangjinchao01 已提交
290 291 292 293
  } else if ((HPPL_OP_N == transa) && (HPPL_OP_T == transb)) {
    stat = CUBLAS_GEMM(t_resource.handle,
                       CUBLAS_OP_T,
                       CUBLAS_OP_N,
294 295 296 297 298 299 300 301 302 303 304
                       dimN,
                       dimM,
                       dimK,
                       &alpha,
                       B_d,
                       ldb,
                       A_d,
                       lda,
                       &beta,
                       C_d,
                       ldc);
Z
zhangjinchao01 已提交
305 306 307
  } else {
    LOG(FATAL) << "parameter transa error!";
  }
308
  CHECK_EQ(stat, CUBLAS_STATUS_SUCCESS) << hl_cublas_get_error_string(stat);
Z
zhangjinchao01 已提交
309 310 311
  CHECK_SYNC("hl_matrix_mul failed");
}

312 313 314 315
void hl_matrix_mul(real *A_d,
                   hl_trans_op_t transa,
                   real *B_d,
                   hl_trans_op_t transb,
Z
zhangjinchao01 已提交
316
                   real *C_d,
317 318 319 320 321
                   int dimM,
                   int dimN,
                   int dimK,
                   real alpha,
                   real beta) {
Z
zhangjinchao01 已提交
322 323 324 325
  int lda = (HPPL_OP_N == transa) ? dimK : dimM;
  int ldb = (HPPL_OP_N == transb) ? dimN : dimK;
  int ldc = dimN;

326 327 328 329 330 331 332 333 334 335 336 337 338
  hl_matrix_mul(A_d,
                transa,
                B_d,
                transb,
                C_d,
                dimM,
                dimN,
                dimK,
                alpha,
                beta,
                lda,
                ldb,
                ldc);
Z
zhangjinchao01 已提交
339 340
}

341 342 343 344 345 346 347 348 349 350 351
void hl_matrix_mul_vector(real *A_d,
                          hl_trans_op_t trans,
                          real *B_d,
                          real *C_d,
                          int dimM,
                          int dimN,
                          real alpha,
                          real beta,
                          int lda,
                          int incb,
                          int incc) {
Z
zhangjinchao01 已提交
352 353 354 355 356 357 358 359
  CHECK_NOTNULL(A_d);
  CHECK_NOTNULL(B_d);
  CHECK_NOTNULL(C_d);

  cublasStatus_t stat;
  if (HPPL_OP_N == trans) {
    stat = CUBLAS_GEMV(t_resource.handle,
                       CUBLAS_OP_T,
360 361
                       dimN,
                       dimM,
Z
zhangjinchao01 已提交
362
                       &alpha,
363 364 365 366
                       A_d,
                       lda,
                       B_d,
                       incb,
Z
zhangjinchao01 已提交
367
                       &beta,
368 369
                       C_d,
                       incc);
Z
zhangjinchao01 已提交
370 371 372
  } else if (HPPL_OP_T == trans) {
    stat = CUBLAS_GEMV(t_resource.handle,
                       CUBLAS_OP_N,
373 374
                       dimN,
                       dimM,
Z
zhangjinchao01 已提交
375
                       &alpha,
376 377 378 379
                       A_d,
                       lda,
                       B_d,
                       incb,
Z
zhangjinchao01 已提交
380
                       &beta,
381 382
                       C_d,
                       incc);
Z
zhangjinchao01 已提交
383 384 385 386
  } else {
    LOG(FATAL) << "parameter transa error!";
  }

387
  CHECK_EQ(stat, CUBLAS_STATUS_SUCCESS) << hl_cublas_get_error_string(stat);
Z
zhangjinchao01 已提交
388 389 390
  CHECK_SYNC("hl_matrix_mul_vector");
}

391 392 393 394 395 396 397 398 399 400
void hl_matrix_mul_vector(real *A_d,
                          hl_trans_op_t trans,
                          real *B_d,
                          real *C_d,
                          int dimM,
                          int dimN,
                          real alpha,
                          real beta) {
  hl_matrix_mul_vector(
      A_d, trans, B_d, C_d, dimM, dimN, alpha, beta, dimN, 1, 1);
Z
zhangjinchao01 已提交
401
}