hl_cnn.h 15.8 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifndef HL_CNN_H_
#define HL_CNN_H_

#include "hl_base.h"

/**
 * @brief   Shrink column to feature.
 *
 * @param[in]   dataCol     expand data.
 * @param[in]   channels    number of channel.
 * @param[in]   height      image height.
 * @param[in]   width       image width.
 * @param[in]   blockH      filter height.
 * @param[in]   blockW      filter width.
 * @param[in]   strideH     stride height.
 * @param[in]   strideW     stride width.
 * @param[in]   paddingH    padding height.
 * @param[in]   paddingW    padding width.
 * @param[in]   outputH     output height.
 * @param[in]   outputW     output width.
 * @param[out]  dataIm      output image data.
 * @param[in]   alpha
 * @param[in]   beta
 */
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
extern void hl_shrink_col2feature(const real* dataCol,
                                  size_t channels,
                                  size_t height,
                                  size_t width,
                                  size_t blockH,
                                  size_t blockW,
                                  size_t strideH,
                                  size_t strideW,
                                  size_t paddingH,
                                  size_t paddingW,
                                  size_t outputH,
                                  size_t outputW,
                                  real* dataIm,
                                  real alpha = 1.0f,
                                  real beta = 0.0f);
Z
zhangjinchao01 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

/**
 * @brief   Expand feature to column.
 *
 * @param[in]   dataIm      input image data.
 * @param[in]   channels    number of channel.
 * @param[in]   height      image height.
 * @param[in]   width       image width.
 * @param[in]   blockH      filter height.
 * @param[in]   blockW      filter width.
 * @param[in]   strideH     stride height.
 * @param[in]   strideW     stride width.
 * @param[in]   paddingH    padding height.
 * @param[in]   paddingW    padding width.
 * @param[in]   outputH     output height.
 * @param[in]   outputW     output width.
 * @param[out]  dataCol     expand data.
 *
 */
73 74 75 76 77 78 79 80 81 82 83 84 85
extern void hl_expand_feature2col(const real* dataIm,
                                  size_t channels,
                                  size_t height,
                                  size_t width,
                                  size_t blockH,
                                  size_t blockW,
                                  size_t strideH,
                                  size_t strideW,
                                  size_t paddingH,
                                  size_t paddingW,
                                  size_t outputH,
                                  size_t outputW,
                                  real* dataCol);
Z
zhangjinchao01 已提交
86 87 88 89 90 91 92 93 94 95 96

/**
 * @brief   Maximum pool forward.
 *
 * @param[in]   frameCnt    batch size of input image.
 * @param[in]   inputData   input data.
 * @param[in]   channels    number of channel.
 * @param[in]   height      image height.
 * @param[in]   width       image width.
 * @param[in]   pooledH     output image height.
 * @param[in]   pooledW     output image width.
97 98 99 100 101 102
 * @param[in]   sizeX       width of pooling window.
 * @param[in]   sizeY       height of pooling window.
 * @param[in]   strideH     pooling stride height.
 * @param[in]   strideW     pooling stride width.
 * @param[in]   paddingH    padding height.
 * @param[in]   paddingW    padding width.
Z
zhangjinchao01 已提交
103
 * @param[out]  tgtData     output data.
Q
qijun 已提交
104
 * @param[in]   tgtStride   stride between output data samples.
Z
zhangjinchao01 已提交
105 106
 *
 */
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
extern void hl_maxpool_forward(const int frameCnt,
                               const real* inputData,
                               const int channels,
                               const int height,
                               const int width,
                               const int pooledH,
                               const int pooledW,
                               const int sizeX,
                               const int sizeY,
                               const int strideH,
                               const int strideW,
                               const int paddingH,
                               const int paddingW,
                               real* tgtData,
                               const int tgtStride);
Z
zhangjinchao01 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134

/**
 * @brief   Maximum pool backward.
 *
 * @param[in]   frameCnt    batch size of input image.
 * @param[in]   inputData   input data.
 * @param[out]  outData     output data.
 * @param[out]  outGrad     output grad data.
 * @param[in]   channels    number of channel.
 * @param[in]   height      image height.
 * @param[in]   width       image width.
 * @param[in]   pooledH     output image height.
 * @param[in]   pooledW     output image width.
135 136 137 138
 * @param[in]   sizeX       width of pooling window.
 * @param[in]   sizeY       height of pooling window.
 * @param[in]   strideH     pooling stride height.
 * @param[in]   strideW     pooling stride width.
Z
zhangjinchao01 已提交
139 140
 * @param[in]   scaleA      scale.
 * @param[in]   scaleB      scale.
141 142 143
 * @param[in]   paddingH    padding height.
 * @param[in]   paddingW    padding width.
 * @param[out]  targetGrad  output grad.
144
 * @param[in]   outStride   stride between output data samples.
Z
zhangjinchao01 已提交
145 146
 *
 */
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
extern void hl_maxpool_backward(const int frameCnt,
                                const real* inputData,
                                const real* outData,
                                const real* outGrad,
                                const int channels,
                                const int height,
                                const int width,
                                const int pooledH,
                                const int pooledW,
                                const int sizeX,
                                const int sizeY,
                                const int strideH,
                                const int strideW,
                                const int paddingH,
                                const int paddingW,
                                real scaleA,
                                real scaleB,
                                real* targetGrad,
                                const int outStride);
Z
zhangjinchao01 已提交
166 167 168 169 170 171 172 173 174 175 176

/**
 * @brief   Averge pool forward.
 *
 * @param[in]   frameCnt    batch size of input image.
 * @param[in]   inputData   input data.
 * @param[in]   channels    number of channel.
 * @param[in]   height      image height.
 * @param[in]   width       image width.
 * @param[in]   pooledH     output image height.
 * @param[in]   pooledW     output image width.
177 178 179 180 181 182
 * @param[in]   sizeX       width of pooling window.
 * @param[in]   sizeY       height of pooling window.
 * @param[in]   strideH     pooling stride height.
 * @param[in]   strideW     pooling stride width.
 * @param[in]   paddingH    padding height.
 * @param[in]   paddingW    padding width.
Z
zhangjinchao01 已提交
183
 * @param[out]  tgtData     output data.
Q
qijun 已提交
184
 * @param[in]   tgtStride   stride between output data samples.
Z
zhangjinchao01 已提交
185 186
 *
 */
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
extern void hl_avgpool_forward(const int frameCnt,
                               const real* inputData,
                               const int channels,
                               const int height,
                               const int width,
                               const int pooledH,
                               const int pooledW,
                               const int sizeX,
                               const int sizeY,
                               const int strideH,
                               const int strideW,
                               const int paddingH,
                               const int paddingW,
                               real* tgtData,
                               const int tgtStride);
Z
zhangjinchao01 已提交
202 203 204 205 206

/**
 * @brief   Maximum pool backward.
 *
 * @param[in]   frameCnt    batch size of input image.
207
 * @param[in]   outGrad     output grad data.
Z
zhangjinchao01 已提交
208 209 210 211 212
 * @param[in]   channels    number of channel.
 * @param[in]   height      image height.
 * @param[in]   width       image width.
 * @param[in]   pooledH     output image height.
 * @param[in]   pooledW     output image width.
213 214 215 216 217 218
 * @param[in]   sizeX       width of pooling window.
 * @param[in]   sizeY       height of pooling window.
 * @param[in]   strideH     pooling stride height.
 * @param[in]   strideW     pooling stride width.
 * @param[in]   paddingH    padding height.
 * @param[in]   paddingW    padding width.
Z
zhangjinchao01 已提交
219 220
 * @param[in]   scaleA      scale.
 * @param[in]   scaleB      scale.
221
 * @param[out]  backGrad    output grad.
222
 * @param[in]   outStride   stride between output data samples.
Z
zhangjinchao01 已提交
223 224
 *
 */
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
extern void hl_avgpool_backward(const int frameCnt,
                                const real* outGrad,
                                const int channels,
                                const int height,
                                const int width,
                                const int pooledH,
                                const int pooledW,
                                const int sizeX,
                                const int sizeY,
                                const int strideH,
                                const int strideW,
                                int paddingH,
                                int paddingW,
                                real scaleA,
                                real scaleB,
                                real* backGrad,
                                const int outStride);
Z
zhangjinchao01 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257

/**
 * @brief   Cross-map-respose normalize forward.
 *
 * @param[in]   frameCnt    batch size of input image.
 * @param[in]   in          input data.
 * @param[in]   scale       buffer.
 * @param[out]  out         output data.
 * @param[in]   channels    number of channel.
 * @param[in]   height      image height.
 * @param[in]   width       image width.
 * @param[in]   sizeX       size.
 * @param[in]   alpha       scale.
 * @param[in]   beta        scale.
 *
 */
258 259 260 261 262 263 264 265 266 267
extern void hl_CMRNorm_forward(size_t frameCnt,
                               const real* in,
                               real* scale,
                               real* out,
                               size_t channels,
                               size_t height,
                               size_t width,
                               size_t sizeX,
                               real alpha,
                               real beta);
Z
zhangjinchao01 已提交
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285

/**
 * @brief   Cross-map-respose normalize backward.
 *
 * @param[in]   frameCnt    batch size of input image.
 * @param[in]   inV         input data.
 * @param[in]   scale       buffer.
 * @param[out]  outV        output value.
 * @param[out]  outDiff     output grad.
 * @param[out]  inDiff      input grad.
 * @param[in]   channels    number of channel.
 * @param[in]   height      image height.
 * @param[in]   width       image width.
 * @param[in]   sizeX       size.
 * @param[in]   alpha       scale.
 * @param[in]   beta        scale.
 *
 */
286 287 288 289 290 291 292 293 294 295 296 297
extern void hl_CMRNorm_backward(size_t frameCnt,
                                const real* inV,
                                const real* scale,
                                const real* outV,
                                const real* outDiff,
                                real* inDiff,
                                size_t channels,
                                size_t height,
                                size_t width,
                                size_t sizeX,
                                real alpha,
                                real beta);
Z
zhangjinchao01 已提交
298

L
liaogang 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311 312
/**
 * @brief   Bilinear interpolation forward.
 *
 * @param[in]   inData      input value.
 * @param[in]   inImgH      input image height.
 * @param[in]   inImgW      input image width.
 * @param[in]   inputH      input batchSize.
 * @param[in]   inputW      input image data dim.
 * @param[out]  outData     output value.
 * @param[in]   outImgH     output image height.
 * @param[in]   outImgW     output image width.
 * @param[in]   outputH     output batchSize.
 * @param[in]   outputW     output image data dim.
 * @param[in]   numChannels number of channels.
L
liaogang 已提交
313 314
 * @param[in]   ratioH      inImgH / outImgH.
 * @param[in]   ratioW      inImgW / outImgW.
L
liaogang 已提交
315 316 317 318 319 320 321 322 323 324 325 326
 *
 */
extern void hl_bilinear_forward(const real* inData,
                                const size_t inImgH,
                                const size_t inImgW,
                                const size_t inputH,
                                const size_t inputW,
                                real* outData,
                                const size_t outImgH,
                                const size_t outImgW,
                                const size_t outputH,
                                const size_t outputW,
L
liaogang 已提交
327 328 329
                                const size_t numChannels,
                                const real ratioH,
                                const real ratioW);
L
liaogang 已提交
330

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
/**
* @brief   Bilinear interpolation backward.
*
* @param[out]  inGrad      input gradient.
* @param[in]   inImgH      input image height.
* @param[in]   inImgW      input image width.
* @param[in]   inputH      input batchSize.
* @param[in]   inputW      input image data dim.
* @param[in]   outGrad     output gradient.
* @param[in]   outImgH     output image height.
* @param[in]   outImgW     output image width.
* @param[in]   outputH     output batchSize.
* @param[in]   outputW     output image data dim.
* @param[in]   numChannels number of channels.
* @param[in]   ratioH      inImgH / outImgH.
* @param[in]   ratioW      inImgW / outImgW.
*
*/
L
liaogang 已提交
349 350 351 352 353 354 355 356 357 358
extern void hl_bilinear_backward(real* inGrad,
                                 const size_t inImgH,
                                 const size_t inImgW,
                                 const size_t inputH,
                                 const size_t inputW,
                                 const real* outGrad,
                                 const size_t outImgH,
                                 const size_t outImgW,
                                 const size_t outputH,
                                 const size_t outputW,
L
liaogang 已提交
359 360 361
                                 const size_t numChannels,
                                 const real ratioH,
                                 const real ratioW);
L
liaogang 已提交
362

363 364 365 366 367 368 369 370 371 372 373
/**
 * @brief   MaxOut forward.
 *
 * @param[in]   inData      input data.
 * @param[out]  outData     output data.
 * @param[out]  idData      output maxId.
 * @param[in]   batchSize   batchSize.
 * @param[in]   size        number of channels * image height * image width.
 * @param[in]   featLen     feature length = image height * image width.
 * @param[in]   groups      number of groups.
 */
374 375 376 377 378 379 380
extern void hl_maxout_forward(const real* inData,
                              real* outData,
                              int* idData,
                              size_t batchSize,
                              size_t size,
                              size_t featLen,
                              size_t groups);
381 382 383 384 385 386 387 388 389 390 391 392

/**
 * @brief   MaxOut backward.
 *
 * @param[out]  inGrad      input grad data.
 * @param[in]   outGrad     output grad data.
 * @param[in]   idData      output maxId.
 * @param[in]   batchSize   batchSize.
 * @param[in]   size        number of channels * image height * image width.
 * @param[in]   featLen     feature length = image height * image width.
 * @param[in]   groups      number of groups.
 */
393 394 395 396 397 398 399
extern void hl_maxout_backward(real* inGrad,
                               const real* outGrad,
                               const int* idData,
                               size_t batchSize,
                               size_t size,
                               size_t featLen,
                               size_t groups);
400

Z
zhangjinchao01 已提交
401
#endif /* HL_CNN_H_ */