cudnn_lstm_op.cc 11.6 KB
Newer Older
P
phlrain 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
L
liuhongyu 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

S
sneaxiy 已提交
15
#include <memory>
L
liuhongyu 已提交
16
#include <string>
C
chengduozh 已提交
17
#include "paddle/fluid/framework/op_registry.h"
L
liuhongyu 已提交
18 19 20 21 22 23 24 25 26

namespace paddle {
namespace operators {

class CudnnLSTMOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
G
GaoWei8 已提交
27 28 29 30 31 32 33 34 35 36 37
    OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "CudnnLSTM");
    OP_INOUT_CHECK(ctx->HasInput("W"), "Input", "W", "CudnnLSTM");
    OP_INOUT_CHECK(ctx->HasInput("InitH"), "Input", "InitH", "CudnnLSTM");
    OP_INOUT_CHECK(ctx->HasInput("InitC"), "Input", "InitC", "CudnnLSTM");

    OP_INOUT_CHECK(ctx->HasOutput("Reserve"), "Output", "Reserve", "CudnnLSTM");
    OP_INOUT_CHECK(ctx->HasOutput("StateOut"), "Output", "StateOut",
                   "CudnnLSTM");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "CudnnLSTM");
    OP_INOUT_CHECK(ctx->HasOutput("LastH"), "Output", "LastH", "CudnnLSTM");
    OP_INOUT_CHECK(ctx->HasOutput("LastC"), "Output", "LastC", "CudnnLSTM");
L
liuhongyu 已提交
38 39

    auto in_dims = ctx->GetInputDim("Input");
G
GaoWei8 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
    auto init_dims = ctx->GetInputDim("InitH");
    PADDLE_ENFORCE_EQ(in_dims.size(), 3,
                      platform::errors::InvalidArgument(
                          "The rank of Input in CudnnLSTM  must be 3. But "
                          "received Input's rank is %d.",
                          in_dims.size()));
    PADDLE_ENFORCE_EQ(init_dims.size(), 3,
                      platform::errors::InvalidArgument(
                          "The rank of InitH in CudnnLSTM  must be 3. But "
                          "received InitH's rank is %d.",
                          init_dims.size()));

    PADDLE_ENFORCE_EQ(in_dims[1], init_dims[1],
                      platform::errors::InvalidArgument(
                          "The in_dims[1] (Input dims) and init_dims[1] (InitH "
                          "dims) should be equal. But "
                          "received in_dims[1] is %d and init_dims[1] is %d.",
                          in_dims[1], init_dims[1]));
    PADDLE_ENFORCE_EQ(in_dims[2], init_dims[2],
                      platform::errors::InvalidArgument(
                          "The in_dims[2] (Input dims) and init_dims[2] (InitH "
                          "dims) should be equal. But "
                          "received in_dims[2] is %d and init_dims[2] is %d.",
                          in_dims[2], init_dims[2]));
L
liuhongyu 已提交
64

65 66
    auto out_dims = in_dims;
    auto hidden_size = ctx->Attrs().Get<int>("hidden_size");
G
GaoWei8 已提交
67 68
    bool is_bidirec = ctx->Attrs().Get<bool>("is_bidirec");
    out_dims[2] = is_bidirec ? hidden_size * 2 : hidden_size;
69

G
GaoWei8 已提交
70 71
    auto last_dims = init_dims;
    last_dims[0] = is_bidirec ? last_dims[0] * 2 : last_dims[0];
72
    ctx->SetOutputDim("Out", out_dims);
G
GaoWei8 已提交
73 74 75 76 77 78 79 80 81 82
    ctx->SetOutputDim("LastH", last_dims);
    ctx->SetOutputDim("LastC", last_dims);
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "Input"),
        ctx.device_context());
L
liuhongyu 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
  }
};

class CudnnLSTMOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput(
        "Input",
        "(Tensor) RNN input tensor, which support variable-time length input "
        "sequence."
        "The shape of the Tensor MUST be ( seq_len * batch_size * input_size)"
        "seq_len is the total time step in this mini-batch (CAN be change in "
        "different batch)"
        "batch_size is the instance number of this batch"
        "input_size is the hidden size of the input."
        "input_hidden_size and the hidden_size in the next may not be same");
    AddInput("InitH",
             "(Tensor) the initial hidden state of the LSTM"
             "input. This is a tensor with shape (num_layers x batch_size x "
             "hidden_size)"
             "and When is_bidirec is True, the shape will be (num_layers*2 x "
             "batch_size x hidden_size)");
    AddInput("InitC",
             "(Tensor) the initial cell state of the LSTm "
             "input. This is a tensor with shape (num_layers x batch_size x "
             "hidden_size)"
             "and When is_bidirec is True, the shape will be (num_layers*2 x "
             "batch_size x hidden_size)");
    AddInput("W",
             "(Tensor) the learnable hidden-hidden weights."
             " The shape is (N), where N is total weight size of the LSTM. "
             " cudnn concatenate all the weight to one Tensor");
G
GaoWei8 已提交
115 116 117 118 119 120 121
    AddOutput("Reserve",
              "(Tensor, a temporary output Tensor to store the reserve_data "
              "of cudnn kernel.")
        .AsIntermediate();
    AddOutput("StateOut",
              "Share memory with State. "
              "Store the global drop state when training");
L
liuhongyu 已提交
122 123 124 125 126 127
    AddOutput("Out",
              "(Tensor) the hidden state of LSTM operator. "
              "The shape is ( seq_len x batch_size x hidden_size) if "
              "is_bidirec is False"
              "and When is_bidirec is True, the shape will be ( seq_len x "
              "batch_size x hidden_size * 2) ");
G
GaoWei8 已提交
128
    AddOutput("LastH",
L
liuhongyu 已提交
129 130 131 132 133
              "(Tensor) the hidden state of the last step. "
              "The shape is ( num_layers x batch_size x hidden_size) if "
              "is_bidirec is False"
              "and When is_bidirec is True, the shape will be (num_layers*2 x "
              "batch_size x hidden_size)");
G
GaoWei8 已提交
134
    AddOutput("LastC",
L
liuhongyu 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147
              "(Tensor) the cell state of the last step"
              "The shape is ( num_layers x batch_size x hidden_size) if "
              "is_bidirec is False"
              "and When is_bidirect is True, the shape will be (num_layers*2 x "
              "batch_size x hidden_size*2)");
    AddAttr<float>(
        "dropout_prob",
        "dropout prob of the dropout op"
        "the dropout ONLY work between lstm layers, not between time steps"
        "There is no dropout work on the Out tensor")
        .SetDefault(0.0);
    AddAttr<bool>("is_bidirec",
                  "is_bidirec"
T
tianshuo78520a 已提交
148
                  "if it is bidirectional rnn"
G
GaoWei8 已提交
149
                  "The will affect the shape of the Out, LastH, and LastC")
L
liuhongyu 已提交
150 151 152 153 154 155
        .SetDefault(false);
    AddAttr<int>("input_size", "input size ot the Input Tensor").SetDefault(10);
    AddAttr<int>("hidden_size", "hidden size of the LSTM").SetDefault(100);
    AddAttr<int>("num_layers", "the total layer number of the LSTM")
        .SetDefault(1);
    AddAttr<bool>("is_test", "True if in test phase.").SetDefault(false);
G
GaoWei8 已提交
156
    AddAttr<int>("seed", "seed to used if fix_seed is True").SetDefault(0);
L
liuhongyu 已提交
157 158 159 160 161 162 163
    AddComment(R"DOC(
CUDNN LSTM implementation

A four-gate Long Short-Term Memory network with no peephole connections.
In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1, 
the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

P
phlrain 已提交
164
$$ i_t = sigmoid(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i) $$
L
liuhongyu 已提交
165

P
phlrain 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
$$ f_t = sigmoid(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f) $$

$$ o_t = sigmoid(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o) $$

$$ \\tilde{c_t} = tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c) $$

$$ c_t = f_t \\odot c_{t-1} + i_t \\odot \\tilde{c_t} $$

$$ h_t = o_t \\odot tanh(c_t) $$

- W terms denote weight matrices (e.g. $W_{ix}$ is the matrix
  of weights from the input gate to the input)
- The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
- sigmoid is the logistic sigmoid function.
- $i, f, o$ and $c$ are the input gate, forget gate, output gate,
  and cell activation vectors, respectively, all of which have the same size as
  the cell output activation vector $h$.
- The $\odot$ is the element-wise product of the vectors.
- `tanh` is the activation functions.
- $\tilde{c_t}$ is also called candidate hidden state,
  which is computed based on the current input and the previous hidden state.

Where sigmoid is the sigmoid operator: sigmoid(x) = 1 / (1 + e^-x), * represents a point-wise multiplication, 
L
liuhongyu 已提交
189 190 191 192 193 194 195 196 197 198 199 200
X represensts a matrix multiplication


)DOC");
  }
};

class CudnnLSTMGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
G
GaoWei8 已提交
201 202 203 204
    OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "CudnnLSTMGrad");
    OP_INOUT_CHECK(ctx->HasInput("W"), "Input", "W", "CudnnLSTMGrad");
    OP_INOUT_CHECK(ctx->HasInput("InitH"), "Input", "InitH", "CudnnLSTMGrad");
    OP_INOUT_CHECK(ctx->HasInput("InitC"), "Input", "InitC", "CudnnLSTMGrad");
L
liuhongyu 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217

    auto SetOutGradDim = [&ctx](const std::string& name) {
      auto g_name = framework::GradVarName(name);
      if (ctx->HasOutput(g_name)) {
        ctx->SetOutputDim(g_name, ctx->GetInputDim(name));
      }
    };

    SetOutGradDim("Input");
    SetOutGradDim("W");
    SetOutGradDim("InitH");
    SetOutGradDim("InitC");
  }
G
GaoWei8 已提交
218 219 220 221 222 223
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
  }
L
liuhongyu 已提交
224 225
};

H
hong 已提交
226 227
template <typename T>
class CudnnLSTMGradOpMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
228
 public:
H
hong 已提交
229
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
230 231

 protected:
232
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
233
    op->SetType("cudnn_lstm_grad");
H
hong 已提交
234 235 236 237
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("InitH", this->Input("InitH"));
    op->SetInput("InitC", this->Input("InitC"));
    op->SetInput("W", this->Input("W"));
G
GaoWei8 已提交
238 239
    op->SetInput("Reserve", this->Output("Reserve"));
    op->SetInput("StateOut", this->Output("StateOut"));
H
hong 已提交
240 241
    op->SetInput("Out", this->Output("Out"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
G
GaoWei8 已提交
242 243
    op->SetInput(framework::GradVarName("LastC"), this->OutputGrad("LastC"));
    op->SetInput(framework::GradVarName("LastH"), this->OutputGrad("LastH"));
H
hong 已提交
244 245 246 247 248 249

    op->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    op->SetOutput(framework::GradVarName("W"), this->InputGrad("W"));
    op->SetOutput(framework::GradVarName("InitH"), this->InputGrad("InitH"));
    op->SetOutput(framework::GradVarName("InitC"), this->InputGrad("InitC"));
    op->SetAttrMap(this->Attrs());
S
sneaxiy 已提交
250 251 252
  }
};

C
chengduozh 已提交
253 254 255 256 257 258 259 260 261
template <typename T>
class NotImpleKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_THROW(
        "CPU is not support for this kernel now. Will be add in the future");
  }
};

L
liuhongyu 已提交
262 263 264 265
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
C
chengduozh 已提交
266
REGISTER_OPERATOR(cudnn_lstm, ops::CudnnLSTMOp, ops::CudnnLSTMOpMaker,
H
hong 已提交
267 268
                  ops::CudnnLSTMGradOpMaker<paddle::framework::OpDesc>,
                  ops::CudnnLSTMGradOpMaker<paddle::imperative::OpBase>);
C
chengduozh 已提交
269
REGISTER_OPERATOR(cudnn_lstm_grad, ops::CudnnLSTMGradOp);
L
liuhongyu 已提交
270

C
chengduozh 已提交
271 272
REGISTER_OP_CPU_KERNEL(cudnn_lstm, ops::NotImpleKernel<float>);
REGISTER_OP_CPU_KERNEL(cudnn_lstm_grad, ops::NotImpleKernel<float>);