parallel_dygraph_no_sync.py 5.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import os
import contextlib
import unittest
import numpy as np
import six
import pickle
import random

import paddle
import paddle.fluid as fluid
import paddle.distributed as dist
import paddle.fluid.dygraph as dygraph
29
from paddle.fluid.dygraph.parallel import ParallelEnv
30 31
from paddle.fluid import core
from paddle.fluid.dygraph.nn import Linear
32
from paddle.fluid.framework import _test_eager_guard
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
from test_dist_base import print_to_err, print_to_out, runtime_main, TestParallelDyGraphRunnerBase

seed = 90
RUN_STEP = 20
batch_size = 4
batch_num = 1000


class SimpleNet(fluid.Layer):
    def __init__(self):
        super(SimpleNet, self).__init__()
        self.net_a = Linear(input_dim=10, output_dim=20)
        self.net_b = Linear(input_dim=20, output_dim=5)
        self.net_c = Linear(input_dim=5, output_dim=10)

    def forward(self, x):
        x = self.net_a(x)
        x = self.net_b(x)
        x = self.net_c(x)
        return x


class TestNoSync(TestParallelDyGraphRunnerBase):
    def get_model(self):
        model = SimpleNet()
        train_reader = paddle.batch(
            fake_sample_reader(), batch_size=batch_size, drop_last=True)
        optimizer = paddle.optimizer.SGD(learning_rate=0.001,
                                         parameters=model.parameters())
        return model, train_reader, optimizer

    def run_one_loop(self, model, optimizer, batch):
        x_data = np.array([x for x in batch])
        x_data = x_data.reshape((-1, 10))
        x = paddle.to_tensor(x_data)
        out = model(x)
        loss = out.sum() / len(batch)
        return loss

72
    def run_trainer_func(self, args):
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
        if fluid.core.is_compiled_with_cuda():
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
        else:
            assert ("Only support CUDAPlace for now.")

        with fluid.dygraph.guard(place):
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
            np.random.seed(seed)
            random.seed(seed)
            model, train_reader, opt = self.get_model()

            if args.update_method == "nccl2":
                dist.init_parallel_env()
                print_to_err(
                    type(self).__name__,
                    "begin to prepare context in dygraph with nccl2")
91 92 93
                model = paddle.DataParallel(
                    model, find_unused_parameters=args.find_unused_parameters)
            print_to_err(type(self).__name__, "model built in dygraph")
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
            out_losses = self.model_train(args, model, opt, train_reader)
            print_to_out(out_losses)
            return out_losses

    def run_trainer_with_spawn_func(self, args):
        # 1. enable dygraph
        paddle.disable_static()

        # 2. init seed
        seed = 90
        paddle.static.default_startup_program().random_seed = seed
        paddle.static.default_main_program().random_seed = seed
        np.random.seed(seed)
        random.seed(seed)
        # get trainer id
        args.trainer_id = paddle.distributed.get_rank()

        # 3. init parallel env
        if args.update_method in ["nccl2", "gloo"]:
            paddle.distributed.init_parallel_env()

        # 4. train model
        model, train_reader, opt = self.get_model()
        if args.update_method in ["nccl2", "gloo"]:
            model = paddle.DataParallel(
                model, find_unused_parameters=args.find_unused_parameters)

        out_losses = self.model_train(args, model, opt, train_reader)
        print_to_out(out_losses)
        return out_losses
124

125
    def model_train(self, args, model, opt, train_reader):
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
        out_losses = []
        for step_id, data in enumerate(train_reader()):
            data = self._get_data(data, args)
            if step_id == RUN_STEP:
                break
            if step_id % 3 != 0:
                if args.update_method == "nccl2":
                    with model.no_sync():
                        loss = self.run_one_loop(model, opt, data)
                        loss.backward()
                else:
                    loss = self.run_one_loop(model, opt, data)
                    loss.backward()
            else:
                loss = self.run_one_loop(model, opt, data)
                loss.backward()
                opt.minimize(loss)
                out_losses.append(loss.numpy())
                model.clear_gradients()
        return out_losses


def fake_sample_reader():
    def __reader__():
        for i in range(batch_num):
            x_data = np.random.random_sample((10, )).astype('float32')
            yield x_data

    return __reader__


if __name__ == "__main__":
    runtime_main(TestNoSync)