conll05.py 9.1 KB
Newer Older
D
dangqingqing 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
D
dangqingqing 已提交
14
"""
Q
qijun 已提交
15
Conll05 dataset.
Q
qijun 已提交
16 17 18 19 20
Paddle semantic role labeling Book and demo use this dataset as an example.
Because Conll05 is not free in public, the default downloaded URL is test set
of Conll05 (which is public). Users can change URL and MD5 to their Conll
dataset. And a pre-trained word vector model based on Wikipedia corpus is used
to initialize SRL model.
D
dangqingqing 已提交
21 22
"""

Q
qijun 已提交
23 24 25
import tarfile
import gzip
import itertools
26
import paddle.dataset.common
M
minqiyang 已提交
27
from six.moves import zip, range
Q
qijun 已提交
28

Y
Your Name 已提交
29
__all__ = ['test, get_dict', 'get_embedding', 'convert']
Y
Yu Yang 已提交
30

D
dangqingqing 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44
DATA_URL = 'http://www.cs.upc.edu/~srlconll/conll05st-tests.tar.gz'
DATA_MD5 = '387719152ae52d60422c016e92a742fc'
WORDDICT_URL = 'http://paddlepaddle.bj.bcebos.com/demo/srl_dict_and_embedding/wordDict.txt'
WORDDICT_MD5 = 'ea7fb7d4c75cc6254716f0177a506baa'
VERBDICT_URL = 'http://paddlepaddle.bj.bcebos.com/demo/srl_dict_and_embedding/verbDict.txt'
VERBDICT_MD5 = '0d2977293bbb6cbefab5b0f97db1e77c'
TRGDICT_URL = 'http://paddlepaddle.bj.bcebos.com/demo/srl_dict_and_embedding/targetDict.txt'
TRGDICT_MD5 = 'd8c7f03ceb5fc2e5a0fa7503a4353751'
EMB_URL = 'http://paddlepaddle.bj.bcebos.com/demo/srl_dict_and_embedding/emb'
EMB_MD5 = 'bf436eb0faa1f6f9103017f8be57cdb7'

UNK_IDX = 0


J
jiaozhenyu 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
def load_label_dict(filename):
    d = dict()
    tag_dict = set()
    with open(filename, 'r') as f:
        for i, line in enumerate(f):
            line = line.strip()
            if line.startswith("B-"):
                tag_dict.add(line[2:])
            elif line.startswith("I-"):
                tag_dict.add(line[2:])
        index = 0
        for tag in tag_dict:
            d["B-" + tag] = index
            index += 1
            d["I-" + tag] = index
            index += 1
        d["O"] = index
    return d


D
dangqingqing 已提交
65 66 67 68 69 70 71 72 73 74
def load_dict(filename):
    d = dict()
    with open(filename, 'r') as f:
        for i, line in enumerate(f):
            d[line.strip()] = i
    return d


def corpus_reader(data_path, words_name, props_name):
    """
75
    Read one corpus. It returns an iterator. Each element of
D
dangqingqing 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
    this iterator is a tuple including sentence and labels. The sentence is
    consist of a list of word IDs. The labels include a list of label IDs.
    :return: a iterator of data.
    :rtype: iterator
    """

    def reader():
        tf = tarfile.open(data_path)
        wf = tf.extractfile(words_name)
        pf = tf.extractfile(props_name)
        with gzip.GzipFile(fileobj=wf) as words_file, gzip.GzipFile(
                fileobj=pf) as props_file:
            sentences = []
            labels = []
            one_seg = []
91
            for word, label in zip(words_file, props_file):
D
dangqingqing 已提交
92 93 94 95
                word = word.strip()
                label = label.strip().split()

                if len(label) == 0:  # end of sentence
96
                    for i in range(len(one_seg[0])):
D
dangqingqing 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
                        a_kind_lable = [x[i] for x in one_seg]
                        labels.append(a_kind_lable)

                    if len(labels) >= 1:
                        verb_list = []
                        for x in labels[0]:
                            if x != '-':
                                verb_list.append(x)

                        for i, lbl in enumerate(labels[1:]):
                            cur_tag = 'O'
                            is_in_bracket = False
                            lbl_seq = []
                            verb_word = ''
                            for l in lbl:
                                if l == '*' and is_in_bracket == False:
                                    lbl_seq.append('O')
                                elif l == '*' and is_in_bracket == True:
                                    lbl_seq.append('I-' + cur_tag)
                                elif l == '*)':
                                    lbl_seq.append('I-' + cur_tag)
                                    is_in_bracket = False
                                elif l.find('(') != -1 and l.find(')') != -1:
                                    cur_tag = l[1:l.find('*')]
                                    lbl_seq.append('B-' + cur_tag)
                                    is_in_bracket = False
                                elif l.find('(') != -1 and l.find(')') == -1:
                                    cur_tag = l[1:l.find('*')]
                                    lbl_seq.append('B-' + cur_tag)
                                    is_in_bracket = True
                                else:
128 129
                                    raise RuntimeError('Unexpected label: %s' %
                                                       l)
D
dangqingqing 已提交
130 131 132 133 134 135 136 137 138 139

                            yield sentences, verb_list[i], lbl_seq

                    sentences = []
                    labels = []
                    one_seg = []
                else:
                    sentences.append(word)
                    one_seg.append(label)

140 141 142 143
        pf.close()
        wf.close()
        tf.close()

D
dangqingqing 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
    return reader


def reader_creator(corpus_reader,
                   word_dict=None,
                   predicate_dict=None,
                   label_dict=None):
    def reader():
        for sentence, predicate, labels in corpus_reader():

            sen_len = len(sentence)

            verb_index = labels.index('B-V')
            mark = [0] * len(labels)
            if verb_index > 0:
                mark[verb_index - 1] = 1
                ctx_n1 = sentence[verb_index - 1]
            else:
                ctx_n1 = 'bos'

            if verb_index > 1:
                mark[verb_index - 2] = 1
                ctx_n2 = sentence[verb_index - 2]
            else:
                ctx_n2 = 'bos'

            mark[verb_index] = 1
            ctx_0 = sentence[verb_index]

            if verb_index < len(labels) - 1:
                mark[verb_index + 1] = 1
                ctx_p1 = sentence[verb_index + 1]
            else:
                ctx_p1 = 'eos'

            if verb_index < len(labels) - 2:
                mark[verb_index + 2] = 1
                ctx_p2 = sentence[verb_index + 2]
            else:
                ctx_p2 = 'eos'

            word_idx = [word_dict.get(w, UNK_IDX) for w in sentence]

            ctx_n2_idx = [word_dict.get(ctx_n2, UNK_IDX)] * sen_len
            ctx_n1_idx = [word_dict.get(ctx_n1, UNK_IDX)] * sen_len
            ctx_0_idx = [word_dict.get(ctx_0, UNK_IDX)] * sen_len
            ctx_p1_idx = [word_dict.get(ctx_p1, UNK_IDX)] * sen_len
            ctx_p2_idx = [word_dict.get(ctx_p2, UNK_IDX)] * sen_len

D
dangqingqing 已提交
193
            pred_idx = [predicate_dict.get(predicate)] * sen_len
D
dangqingqing 已提交
194 195
            label_idx = [label_dict.get(w) for w in labels]

D
dangqingqing 已提交
196 197
            yield word_idx, ctx_n2_idx, ctx_n1_idx, \
              ctx_0_idx, ctx_p1_idx, ctx_p2_idx, pred_idx, mark, label_idx
D
dangqingqing 已提交
198

D
update  
dangqingqing 已提交
199
    return reader
D
dangqingqing 已提交
200 201 202


def get_dict():
Q
qijun 已提交
203 204 205
    """
    Get the word, verb and label dictionary of Wikipedia corpus.
    """
R
root 已提交
206
    word_dict = load_dict(
207
        paddle.dataset.common.download(WORDDICT_URL, 'conll05st', WORDDICT_MD5))
R
root 已提交
208
    verb_dict = load_dict(
209
        paddle.dataset.common.download(VERBDICT_URL, 'conll05st', VERBDICT_MD5))
J
jiaozhenyu 已提交
210
    label_dict = load_label_dict(
211
        paddle.dataset.common.download(TRGDICT_URL, 'conll05st', TRGDICT_MD5))
D
dangqingqing 已提交
212 213 214 215
    return word_dict, verb_dict, label_dict


def get_embedding():
Q
qijun 已提交
216 217 218
    """
    Get the trained word vector based on Wikipedia corpus.
    """
219
    return paddle.dataset.common.download(EMB_URL, 'conll05st', EMB_MD5)
D
dangqingqing 已提交
220 221 222


def test():
Q
qijun 已提交
223 224 225
    """
    Conll05 test set creator.

Q
qijun 已提交
226
    Because the training dataset is not free, the test dataset is used for
Q
qijun 已提交
227 228 229
    training. It returns a reader creator, each sample in the reader is nine
    features, including sentence sequence, predicate, predicate context,
    predicate context flag and tagged sequence.
Q
qijun 已提交
230

Q
qijun 已提交
231
    :return: Training reader creator
Q
qijun 已提交
232 233
    :rtype: callable
    """
D
dangqingqing 已提交
234 235
    word_dict, verb_dict, label_dict = get_dict()
    reader = corpus_reader(
236
        paddle.dataset.common.download(DATA_URL, 'conll05st', DATA_MD5),
D
dangqingqing 已提交
237 238 239
        words_name='conll05st-release/test.wsj/words/test.wsj.words.gz',
        props_name='conll05st-release/test.wsj/props/test.wsj.props.gz')
    return reader_creator(reader, word_dict, verb_dict, label_dict)
Y
Yancey1989 已提交
240 241


242
def fetch():
243 244 245 246 247
    paddle.dataset.common.download(WORDDICT_URL, 'conll05st', WORDDICT_MD5)
    paddle.dataset.common.download(VERBDICT_URL, 'conll05st', VERBDICT_MD5)
    paddle.dataset.common.download(TRGDICT_URL, 'conll05st', TRGDICT_MD5)
    paddle.dataset.common.download(EMB_URL, 'conll05st', EMB_MD5)
    paddle.dataset.common.download(DATA_URL, 'conll05st', DATA_MD5)
R
root 已提交
248 249


Y
Your Name 已提交
250
def convert(path):
R
root 已提交
251 252 253
    """
    Converts dataset to recordio format
    """
254 255
    paddle.dataset.common.convert(path, test(), 1000, "conl105_train")
    paddle.dataset.common.convert(path, test(), 1000, "conl105_test")