sequence_pad_op.cc 8.8 KB
Newer Older
Y
yangyaming 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/sequence_ops/sequence_pad_op.h"
Y
yangyaming 已提交
16 17 18 19 20 21 22 23

namespace paddle {
namespace operators {

class SequencePadOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

24
 protected:
Y
yangyaming 已提交
25 26 27
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of SequencePadOp should not be null.");
28 29
    PADDLE_ENFORCE(ctx->HasInput("PadValue"),
                   "Input(PadValue) of SequencePadOp should not be null.");
Y
yangyaming 已提交
30 31
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of SequencePadOp should not be null.");
32 33
    PADDLE_ENFORCE(ctx->HasOutput("Length"),
                   "Output(Length) of SequencePadOp should not be null.");
Y
yangyaming 已提交
34 35

    auto x_dims = ctx->GetInputDim("X");
36
    PADDLE_ENFORCE_GE(x_dims.size(), 2,
37
                      "The rank of Input(X) can't be less than 2.");
38 39 40 41 42 43
    auto time_step_dims = framework::slice_ddim(x_dims, 1, x_dims.size());
    auto pad_value_dims = ctx->GetInputDim("PadValue");
    PADDLE_ENFORCE(pad_value_dims == framework::make_ddim({1}) ||
                       pad_value_dims == time_step_dims,
                   "The Input(PadValue) must be a scalar or a tensor whose "
                   "shape equals to time steps in sequences");
Y
yangyaming 已提交
44

F
fengjiayi 已提交
45
    int out_dim_0 = -1;
Y
yangyaming 已提交
46

47
    int padded_length = ctx->Attrs().Get<int>("padded_length");
Y
yangyaming 已提交
48
    if (ctx->IsRuntime()) {
49
      // run time
Y
yangyaming 已提交
50 51
      framework::Variable* x_var =
          boost::get<framework::Variable*>(ctx->GetInputVarPtrs("X")[0]);
52 53 54 55 56 57 58 59 60 61 62 63 64
      const auto& x_lod = x_var->Get<LoDTensor>().lod();
      PADDLE_ENFORCE(!x_lod.empty(), "The Input(X) must hold lod info.");
      const auto& x_lod_0 = x_lod[0];
      PADDLE_ENFORCE_GE(x_lod_0.size(), 2,
                        "The Input(X)'s lod info is corrupted.");
      PADDLE_ENFORCE_EQ(
          x_dims[0], static_cast<int64_t>(x_lod_0.back()),
          "The Input(X)'s lod info mismatches the actual tensor shape.");

      int seq_num = x_lod_0.size() - 1;
      int max_seq_len = math::MaximumSequenceLength(x_lod_0);
      if (padded_length == -1) {
        padded_length = max_seq_len;
Y
yangyaming 已提交
65
      }
66 67 68
      PADDLE_ENFORCE_GE(padded_length, max_seq_len,
                        "The Attr(padded_length) must be -1 or an int greater "
                        "than the length of the longest original sequence.");
F
fengjiayi 已提交
69
      out_dim_0 = seq_num;
Y
yangyaming 已提交
70
    } else {
71
      // compile time
72 73 74
      if (padded_length == -1) {
        padded_length = 1;
      }
Y
yangyaming 已提交
75 76
      framework::VarDesc* x_desc =
          boost::get<framework::VarDesc*>(ctx->GetInputVarPtrs("X")[0]);
77
      PADDLE_ENFORCE_GE(x_desc->GetLoDLevel(), 1);
Y
yangyaming 已提交
78 79
    }

80 81
    std::vector<int> out_dims_vec{out_dim_0, padded_length};
    std::vector<int> len_dims_vec{out_dim_0, 1};
F
fengjiayi 已提交
82 83 84 85
    auto time_step_dims_vec = framework::vectorize2int(time_step_dims);
    out_dims_vec.insert(out_dims_vec.end(), time_step_dims_vec.begin(),
                        time_step_dims_vec.end());
    ctx->SetOutputDim("Out", framework::make_ddim(out_dims_vec));
86 87 88 89 90 91 92 93
    ctx->SetOutputDim("Length", framework::make_ddim(len_dims_vec));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    auto data_type = framework::GetDataTypeOfVar(ctx.InputVar("X"));
    return framework::OpKernelType(data_type, ctx.device_context());
Y
yangyaming 已提交
94 95 96 97 98
  }
};

class SequencePadOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
99
  void Make() override {
Y
yangyaming 已提交
100 101
    AddInput("X",
             "(LoDTensor, default LoDTensor<float>) Input variable which "
102 103 104 105 106 107 108 109 110
             "should contain lod information.");
    AddInput("PadValue",
             "(LoDTensor), this Tensor holds values that will be fill into "
             "padded steps. It can be a scalar or a tensor whose shape equals "
             "to time steps in sequences. If it's a scalar, it will be "
             "automatically broadcasted to the shape of time step.");
    AddOutput(
        "Out",
        "(LoDTensor) The output vairable, which contains padded sequences.");
111 112 113 114
    AddOutput(
        "Length",
        "(LoDTensor) The output vairable, which contains the actual length of "
        "sequences before padding.");
115 116 117 118 119 120 121 122
    AddAttr<int>(
        "padded_length",
        "The length of padded sequences. It can be setted to -1 or "
        "any positive int. When it is -1, all sequences will be padded up to "
        "the length of the longest one among them; when it a certain positive "
        "value, it must be greater than the length of the longest original "
        "sequence.")
        .SetDefault(-1);
Y
yangyaming 已提交
123
    AddComment(R"DOC(
F
fengjiayi 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
      Sequence Pad Operator

      This operator pads sequences in a same batch to a consistent length. 
      The length is specified by attribute 'padded_length'. New elements, 
      whose values are specified by input 'PadValue', will be appended to 
      the end of each sequence, to make their final lengths consistent.

      Following are cases to better explain how this works:

      Case 1:

      Given a 1-level LoDTensor input(X):
          X.lod = [[0, 2,       5]]
          X.data = [a, b, c, d, e]
      and Input(PadValue):
          PadValue.data = [0]
      and attribite 'padded_length' = 4,
F
fengjiayi 已提交
141 142 143
      then we get LoDTensor:
          Out.data = [[a, b, 0, 0], 
                      [c, d, e, 0]]
144
          Length.data = [[2], [3]]
F
fengjiayi 已提交
145 146 147 148 149 150 151 152 153 154
      
      Case 2:

      Given a 1-level LoDTensor input(X):
          X.lod = [[0,               2,                           5]]
          X.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]]
      and Input(PadValue):
          PadValue.data = [0]
      and attribite 'padded_length' = -1, which mean using the length 
      of longest input sequence(3 in this case),
F
fengjiayi 已提交
155 156 157
      then we get LoDTensor:
          Out.data = [[[a1, a2], [b1, b2], [0, 0]], 
                      [[c1, c2], [d1, d2], [e1, e2]]]
158 159
          Length.data = [[2], [3]]
 
F
fengjiayi 已提交
160 161 162 163 164 165 166 167 168
      Case 3:

      Given a 1-level LoDTensor input(X):
          X.lod = [[0,               2,                           5]]
          X.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]]
      and Input(PadValue):
          PadValue.data = [p1, p2]
      and attribite 'padded_length' = -1, which mean using the length 
      of longest input sequence(3 in this case),
F
fengjiayi 已提交
169 170 171
      then we get LoDTensor:
          Out.data = [[[a1, a2], [b1, b2], [p1, p2]], 
                      [[c1, c2], [d1, d2], [e1, e2]]]
172
          Length.data = [[2], [3]]
Y
yangyaming 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192

    )DOC");
  }
};

class SequencePadGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of SequencePadGradOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) of SequencePadGradOp should not be null.");

    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
      ctx->ShareLoD("X", /*->*/ framework::GradVarName("X"));
    }
  }
193 194 195 196 197 198 199

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    auto data_type = framework::GetDataTypeOfVar(ctx.InputVar("X"));
    return framework::OpKernelType(data_type, ctx.device_context());
  }
Y
yangyaming 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(sequence_pad, ops::SequencePadOp, ops::SequencePadOpMaker,
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(sequence_pad_grad, ops::SequencePadGradOp);
REGISTER_OP_CPU_KERNEL(
    sequence_pad,
    ops::SequencePadOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SequencePadOpKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SequencePadOpKernel<paddle::platform::CPUDeviceContext, int>,
    ops::SequencePadOpKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
    sequence_pad_grad,
    ops::SequencePadGradOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SequencePadGradOpKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SequencePadGradOpKernel<paddle::platform::CPUDeviceContext, int>,
    ops::SequencePadGradOpKernel<paddle::platform::CPUDeviceContext, int64_t>);