build_from_source_en.md 5.7 KB
Newer Older
L
liaogang 已提交
1
Installing from Sources
G
gangliao 已提交
2
==========================
Z
zhangjinchao01 已提交
3

L
liaogang 已提交
4 5 6
* [1. Download and Setup](#download)
* [2. Requirements](#requirements)
* [3. Build on Ubuntu](#ubuntu)
L
liaogang 已提交
7

L
liaogang 已提交
8
## <span id="download">Download and Setup</span> 
G
gangliao 已提交
9
You can download PaddlePaddle from the [github source](https://github.com/PaddlePaddle/Paddle).
Z
zhangjinchao01 已提交
10

L
liaogang 已提交
11
```bash
G
gangliao 已提交
12
git clone https://github.com/PaddlePaddle/Paddle paddle
13
cd paddle
L
liaogang 已提交
14 15
```
## <span id="requirements">Requirements</span>
Z
zhangjinchao01 已提交
16

L
liaogang 已提交
17 18 19
To compile the source code, your computer must be equipped with the following dependencies.

- **Compiler**: GCC >= 4.8 or Clang >= 3.3 (AppleClang >= 5.1)
L
liaogang 已提交
20
- **CMake**: version >= 3.0 (at least CMake 3.4 on Mac OS X)
L
liaogang 已提交
21
- **BLAS**: MKL, OpenBlas or ATLAS
Z
zhangjinchao01 已提交
22

L
liaogang 已提交
23 24 25
**Note:** For CUDA 7.0 and CUDA 7.5, GCC 5.0 and up are not supported!
For CUDA 8.0, GCC versions later than 5.3 are not supported!

L
liaogang 已提交
26
### Options
Z
zhangjinchao01 已提交
27

L
liaogang 已提交
28
PaddlePaddle supports some build options. 
Z
zhangjinchao01 已提交
29

G
gangliao 已提交
30 31 32 33 34 35 36 37 38
<html>
<table> 
<thead>
<tr>
<th scope="col" class="left">Optional</th>
<th scope="col" class="left">Description</th>
</tr>
</thead>
<tbody>
L
liaogang 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
<tr><td class="left">WITH_GPU</td><td class="left">Compile PaddlePaddle with NVIDIA GPU</td></tr>
<tr><td class="left">WITH_AVX</td><td class="left">Compile PaddlePaddle with AVX intrinsics</td></tr>
<tr><td class="left">WITH_DSO</td><td class="left">Compile PaddlePaddle with dynamic linked CUDA</td></tr>
<tr><td class="left">WITH_TESTING</td><td class="left">Compile PaddlePaddle with unit testing</td></tr>
<tr><td class="left">WITH_SWIG_PY</td><td class="left">Compile PaddlePaddle with inference api</td></tr>
<tr><td class="left">WITH_STYLE_CHECK</td><td class="left">Compile PaddlePaddle with style check</td></tr>
<tr><td class="left">WITH_PYTHON</td><td class="left">Compile PaddlePaddle with python interpreter</td></tr>
<tr><td class="left">WITH_DOUBLE</td><td class="left">Compile PaddlePaddle with double precision</td></tr>
<tr><td class="left">WITH_RDMA</td><td class="left">Compile PaddlePaddle with RDMA support</td></tr>
<tr><td class="left">WITH_TIMER</td><td class="left">Compile PaddlePaddle with stats timer</td></tr>
<tr><td class="left">WITH_PROFILER</td><td class="left">Compile PaddlePaddle with GPU profiler</td></tr>
<tr><td class="left">WITH_DOC</td><td class="left">Compile PaddlePaddle with documentation</td></tr>
<tr><td class="left">ON_COVERALLS</td><td class="left">Compile PaddlePaddle with code coverage</td></tr>
<tr><td class="left">COVERALLS_UPLOAD</td><td class="left">Package code coverage data to coveralls</td></tr>
<tr><td class="left">ON_TRAVIS</td><td class="left">Exclude special unit test on Travis CI</td></tr>
G
gangliao 已提交
54
</tbody>
G
gangliao 已提交
55
</table>
G
gangliao 已提交
56
</html>
Z
zhangjinchao01 已提交
57

L
liaogang 已提交
58
**Note:**
L
liaogang 已提交
59 60
  - The GPU version works best with Cuda Toolkit 8.0 and cuDNN v5.
  - Other versions like Cuda Toolkit 7.0, 7.5 and cuDNN v3, v4 are also supported.
L
liaogang 已提交
61
  - **To utilize cuDNN v5, Cuda Toolkit 7.5 is prerequisite and vice versa.**
Z
zhangjinchao01 已提交
62

L
liaogang 已提交
63
As a simple example, consider the following:  
Z
zhangjinchao01 已提交
64

L
liaogang 已提交
65
1. **BLAS Dependencies(optional)**
Z
zhangjinchao01 已提交
66
  
L
liaogang 已提交
67 68
    CMake will search BLAS libraries from system. If not found, OpenBLAS will be downloaded, built and installed automatically.
    To utilize preinstalled BLAS, you can simply specify MKL, OpenBLAS or ATLAS via `MKL_ROOT`, `OPENBLAS_ROOT` or `ATLAS_ROOT`.
Z
zhangjinchao01 已提交
69

L
liaogang 已提交
70
    ```bash
L
liaogang 已提交
71 72 73 74
    # specify MKL
    cmake .. -DMKL_ROOT=<mkl_path>
    # or specify OpenBLAS
    cmake .. -DOPENBLAS_ROOT=<openblas_path>
L
liaogang 已提交
75
    ```
Z
zhangjinchao01 已提交
76

L
liaogang 已提交
77
2. **Doc Dependencies(optional)**
Z
zhangjinchao01 已提交
78

L
liaogang 已提交
79
    To generate PaddlePaddle's documentation, install dependencies and set `-DWITH_DOC=ON` as follows:
Z
zhangjinchao01 已提交
80

L
liaogang 已提交
81 82
    ```bash
    pip install 'sphinx>=1.4.0'
83
    pip install sphinx_rtd_theme recommonmark
Z
zhangjinchao01 已提交
84

L
liaogang 已提交
85 86 87 88
    # install doxygen on Ubuntu
    sudo apt-get install doxygen 
    # install doxygen on Mac OS X
    brew install doxygen
Z
zhangjinchao01 已提交
89

L
liaogang 已提交
90 91 92
    # active docs in cmake
    cmake .. -DWITH_DOC=ON`
    ```
Z
zhangjinchao01 已提交
93

L
liaogang 已提交
94
## <span id="ubuntu">Build on Ubuntu 14.04</span>
Z
zhangjinchao01 已提交
95

L
liaogang 已提交
96
### Install Dependencies
Z
zhangjinchao01 已提交
97

L
liaogang 已提交
98
- **CPU Dependencies**
Z
zhangjinchao01 已提交
99

L
liaogang 已提交
100 101 102
    ```bash
    # necessary
    sudo apt-get update
L
liaogang 已提交
103
    sudo apt-get install -y g++ make cmake build-essential python python-pip libpython-dev git
L
liaogang 已提交
104 105
    sudo pip install wheel numpy
    sudo pip install 'protobuf>=3.0.0'
L
liaogang 已提交
106 107 108
    ```
  
- **GPU Dependencies (optional)**
Z
zhangjinchao01 已提交
109

L
liaogang 已提交
110
    To build GPU version, you will need the following installed:
Z
zhangjinchao01 已提交
111

L
liaogang 已提交
112 113 114 115
        1. a CUDA-capable GPU
        2. A supported version of Linux with a gcc compiler and toolchain
        3. NVIDIA CUDA Toolkit (available at http://developer.nvidia.com/cuda-downloads)
        4. NVIDIA cuDNN Library (availabel at https://developer.nvidia.com/cudnn)
Z
zhangjinchao01 已提交
116

L
liaogang 已提交
117 118 119 120 121
    The CUDA development environment relies on tight integration with the host development environment,
    including the host compiler and C runtime libraries, and is therefore only supported on
    distribution versions that have been qualified for this CUDA Toolkit release.
        
    After downloading cuDNN library, issue the following commands:
Z
zhangjinchao01 已提交
122

L
liaogang 已提交
123 124 125 126
    ```bash
    sudo tar -xzf cudnn-7.5-linux-x64-v5.1.tgz -C /usr/local
    sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*
    ```
127
    Then you need to set LD\_LIBRARY\_PATH, PATH environment variables in ~/.bashrc.
L
liaogang 已提交
128 129 130 131 132 133 134 135 136

    ```bash
    export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
    export PATH=/usr/local/cuda/bin:$PATH
    ```

### Build and Install

As usual, the best option is to create build folder under paddle project directory.
Z
zhangjinchao01 已提交
137 138

```bash
L
liaogang 已提交
139
mkdir build && cd build
L
liaogang 已提交
140
``` 
L
liaogang 已提交
141

L
liaogang 已提交
142
Finally, you can build and install PaddlePaddle:
Z
zhangjinchao01 已提交
143 144 145

```bash
# you can add build option here, such as:    
L
liaogang 已提交
146
cmake .. -DCMAKE_INSTALL_PREFIX=<path to install>
147
# please use sudo make install, if you want to install PaddlePaddle into the system
Z
zhangjinchao01 已提交
148
make -j `nproc` && make install
L
liaogang 已提交
149
# set PaddlePaddle installation path in ~/.bashrc
L
liaogang 已提交
150
export PATH=<path to install>/bin:$PATH
L
liaogang 已提交
151
# install PaddlePaddle Python modules.
L
liaogang 已提交
152
sudo pip install <path to install>/opt/paddle/share/wheels/*.whl
Z
zhangjinchao01 已提交
153
```