unary_op.cc 2.6 KB
Newer Older
Z
zhupengyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <NvInfer.h>
16

Z
zhupengyang 已提交
17
#include <string>
18

Z
zhupengyang 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
#include "glog/logging.h"
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/engine.h"
#include "paddle/fluid/inference/tensorrt/helper.h"
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace framework {
class Scope;

namespace proto {
class OpDesc;
}  // namespace proto
}  // namespace framework
}  // namespace paddle

namespace paddle {
namespace inference {
namespace tensorrt {

class UnaryOpConverter : public OpConverter {
 public:
  UnaryOpConverter() {}
  void operator()(const framework::proto::OpDesc& op,
                  const framework::Scope& scope, bool test_mode) override {
    // Here the two nullptr looks strange, that's because the
    // framework::OpDesc's constructor is strange.
    framework::OpDesc op_desc(op, nullptr);
    VLOG(3) << "convert a fluid unary op to tensorrt unary layer whose "
               "type is "
            << op_type_;
    nvinfer1::ITensor* input_tensor =
        engine_->GetITensor(op_desc.Input("X")[0]);
    auto op_pair = ops.find(op_type_);
    nvinfer1::IUnaryLayer* layer =
        TRT_ENGINE_ADD_LAYER(engine_, Unary, *input_tensor, op_pair->second);
    auto output_name = op_desc.Output("Out")[0];
    RreplenishLayerAndOutput(layer, op_type_, {output_name}, test_mode);
  }

 protected:
  std::string op_type_;
  static const std::unordered_map<std::string, nvinfer1::UnaryOperation> ops;
};

const std::unordered_map<std::string, nvinfer1::UnaryOperation>
    UnaryOpConverter::ops = {
        {"exp", nvinfer1::UnaryOperation::kEXP},
        {"log", nvinfer1::UnaryOperation::kLOG},
};

class ExpOpConverter : public UnaryOpConverter {
 public:
  ExpOpConverter() { op_type_ = "exp"; }
};

class LogOpConverter : public UnaryOpConverter {
 public:
  LogOpConverter() { op_type_ = "log"; }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

REGISTER_TRT_OP_CONVERTER(exp, ExpOpConverter);
REGISTER_TRT_OP_CONVERTER(log, LogOpConverter);