random.py 8.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import contextlib
17
import numpy as np
18 19 20 21 22
from paddle import _C_ops
from paddle.fluid import core
from paddle.fluid.data_feeder import check_variable_and_dtype
from paddle.fluid.framework import in_dygraph_mode, default_main_program
from paddle.fluid.layer_helper import LayerHelper
23 24

__all__ = []
25 26 27

MODEL_PARALLEL_RNG = 'model_parallel_rng'

28 29 30
# This file is inspired by Megatron to control random states for MP:
# https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/mpu/random.py

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

class RNGStatesTracker:
    """
    Tracker the RNG states.
    """

    def __init__(self):
        # Map from name to the rng state.
        self.states_ = {}
        self.seeds_ = set()

    def reset(self):
        self.states_ = {}
        self.seeds_ = set()

    def add(self, name, seed):
        if seed in self.seeds_:
            raise ValueError('seed {} already exists'.format(seed))
        self.seeds_.add(seed)
        if name in self.states_:
            raise ValueError('state {} already exists'.format(name))
        orig_rng_state = paddle.get_cuda_rng_state()
        paddle.seed(seed)
        self.states_[name] = paddle.get_cuda_rng_state()
        paddle.set_cuda_rng_state(orig_rng_state)

57 58 59 60 61 62 63 64 65
    def get_states_tracker(self):
        states = {}
        for name in self.states_:
            states[name] = self.states_[name]
        return states

    def set_states_tracker(self, states):
        self.states_ = states

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
    @contextlib.contextmanager
    def rng_state(self, name=MODEL_PARALLEL_RNG):
        if name not in self.states_:
            raise ValueError('state {} does not exist'.format(name))
        orig_cuda_rng_state = paddle.get_cuda_rng_state()
        paddle.set_cuda_rng_state(self.states_[name])
        try:
            yield
        finally:
            self.states_[name] = paddle.get_cuda_rng_state()
            paddle.set_cuda_rng_state(orig_cuda_rng_state)


RNG_STATE_TRACKER = RNGStatesTracker()


def get_rng_state_tracker():
    return RNG_STATE_TRACKER


86
def model_parallel_random_seed(seed=None):
87 88 89 90
    import paddle.distributed.fleet as fleet
    hcg = fleet.get_hybrid_communicate_group()
    rank = hcg.get_model_parallel_rank()

91 92 93 94 95 96
    if seed:
        global_seed = seed
        local_seed = seed * 1024 + rank * 100
    else:
        global_seed = np.random.randint(0, 655350)
        local_seed = np.random.randint(rank * 10000, (rank + 1) * 10000 - 1)
97 98 99

    RNG_STATE_TRACKER.reset()
    RNG_STATE_TRACKER.add(MODEL_PARALLEL_RNG, local_seed)
100
    paddle.seed(global_seed)
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232


def determinate_seed(rng_name):
    assert rng_name is not None and rng_name != ""
    helper = LayerHelper('seed', **locals())
    out = helper.create_variable_for_type_inference(dtype=paddle.int32)
    # set force_cpu to reduce sync copy from CPU->GPU->CPU, and reduce pipeline hang
    helper.append_op(
        type='seed',
        outputs={'Out': out},
        attrs={'deterministic': True,
               'rng_name': rng_name,
               'force_cpu': True})
    return out


def dropout(x,
            p=0.5,
            axis=None,
            rng_name=None,
            training=True,
            mode="upscale_in_train",
            name=None):
    """
    Dropout is a regularization technique for reducing overfitting by preventing
    neuron co-adaption during training. The dropout operator randomly sets the
    outputs of some units to zero, while upscale others according to the given
    dropout probability.

    Args:
        x (Tensor): The input tensor. The data type is float32 or float64.
        p (float|int): Probability of setting units to zero. Default 0.5.
        axis (int|list|tuple): The axis along which the dropout is performed. Default None.
        rng_name (str): The random seed generator name, which used to obtain deterministic results.
        training (bool): A flag indicating whether it is in train phrase or not. Default True.
        mode(str): ['upscale_in_train'(default) | 'downscale_in_infer'].

                           1. upscale_in_train(default), upscale the output at training time

                              - train: out = input * mask / ( 1.0 - dropout_prob )
                              - inference: out = input

                           2. downscale_in_infer, downscale the output at inference

                              - train: out = input * mask
                              - inference: out = input * (1.0 - dropout_prob)
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor representing the dropout, has same shape and data type as `x` .


    Examples:
        We use ``p=0.5`` in the following description for simplicity.

        1. When ``axis=None`` , this is commonly used dropout, which dropout each element of x randomly.

        ..  code-block:: text

            Let's see a simple case when x is a 2d tensor with shape 2*3:
            [[1 2 3]
             [4 5 6]]
            we generate mask with the same shape as x, which is 2*3. The value of mask is
            sampled from a Bernoulli distribution randomly. For example, we may get such mask:
            [[0 1 0]
             [1 0 1]]
            So the output is obtained from elementwise multiply of x and mask:
            [[0 2 0]
             [4 0 6]]
            Using default setting, i.e. ``mode='upscale_in_train'`` ,
            if in training phase, the final upscale output is:
            [[0 4 0 ]
             [8 0 12]]
            if in test phase, the output is the same as input:
            [[1 2 3]
             [4 5 6]]
            we can also set ``mode='downscale_in_infer'`` , then
            if in training phase, the final output is:
            [[0 2 0]
             [4 0 6]]
            if in test phase, the scale output is:
            [[0.5 1.  1.5]
             [2.  2.5 3. ]]

    """
    if rng_name is None:
        return paddle.nn.functional.dropout(x, p, axis, training, mode, name)

    # fast return for p == 0
    if p == 0: return x

    assert isinstance(p, (float, int)), \
        TypeError("p argument should be a number")
    assert 0 <= p <= 1, ValueError("p argument should between 0 and 1")
    assert mode in ('downscale_in_infer', 'upscale_in_train'), \
        ValueError(
            "mode argument should be 'downscale_in_infer' or 'upscale_in_train'")

    assert axis is None, \
        TypeError("unsupport axis when using random seed generator")

    mode = 'downgrade_in_infer' if mode == 'downscale_in_infer' else mode  #semantic transfer

    # dygraph using tracker, doesn't need determinate seed
    if in_dygraph_mode():
        out, mask = _C_ops.dropout(x, 'dropout_prob', p, 'is_test',
                                   not training, 'fix_seed', False, 'seed', 0,
                                   'dropout_implementation', mode)
        return out

    seed = determinate_seed(rng_name)

    helper = LayerHelper('dropout', **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'dropout')

    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)

    helper.append_op(
        type='dropout',
        inputs={'X': [x],
                'Seed': seed},
        outputs={'Out': [out],
                 'Mask': [mask]},
        attrs={
            'dropout_prob': p,
            'is_test': not training,
            'dropout_implementation': mode,
        })
    return out