analysis_config.cc 15.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
#include "paddle/fluid/inference/api/paddle_pass_builder.h"
17
#include "paddle/fluid/platform/cpu_info.h"
18
#include "paddle/fluid/platform/enforce.h"
19
#include "paddle/fluid/platform/gpu_info.h"
20 21

namespace paddle {
W
wanghuancoder 已提交
22 23
struct MkldnnQuantizerConfig;

24
extern const std::vector<std::string> kTRTSubgraphPasses;
石晓伟 已提交
25
extern const std::vector<std::string> kLiteSubgraphPasses;
26

27
PassStrategy *AnalysisConfig::pass_builder() const {
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
  if (!pass_builder_.get()) {
    if (use_gpu_) {
      LOG(INFO) << "Create GPU IR passes";
      pass_builder_.reset(new GpuPassStrategy);
    } else {
      LOG(INFO) << "Create CPU IR passes";
      pass_builder_.reset(new CpuPassStrategy);
    }
  } else if (pass_builder_->use_gpu() ^ use_gpu()) {
    LOG(WARNING) << "The use_gpu flag is not compatible between Config and "
                    "PassBuilder, the flags are "
                 << use_gpu() << " " << pass_builder_->use_gpu();
    LOG(WARNING) << "Please make them compatible, still use the existing "
                    "PassBuilder.";
  }

44 45 46
  return pass_builder_.get();
}

47
AnalysisConfig::AnalysisConfig(const std::string &model_dir) {
48
  model_dir_ = model_dir;
Y
Yan Chunwei 已提交
49 50

  Update();
51
}
52 53
AnalysisConfig::AnalysisConfig(const std::string &prog_file,
                               const std::string &params_file) {
54 55
  prog_file_ = prog_file;
  params_file_ = params_file;
Y
Yan Chunwei 已提交
56 57

  Update();
58
}
59 60
void AnalysisConfig::SetModel(const std::string &prog_file_path,
                              const std::string &params_file_path) {
61 62
  prog_file_ = prog_file_path;
  params_file_ = params_file_path;
Y
Yan Chunwei 已提交
63 64

  Update();
65
}
66 67
void AnalysisConfig::EnableUseGpu(uint64_t memory_pool_init_size_mb,
                                  int device_id) {
68 69 70 71 72
#ifdef PADDLE_WITH_CUDA
  use_gpu_ = true;
  memory_pool_init_size_mb_ = memory_pool_init_size_mb;
  device_id_ = device_id;
#else
Y
Yan Chunwei 已提交
73
  LOG(ERROR) << "Please compile with gpu to EnableGpu()";
74 75
  use_gpu_ = false;
#endif
Y
Yan Chunwei 已提交
76 77 78

  Update();
}
79
void AnalysisConfig::DisableGpu() {
Y
Yan Chunwei 已提交
80 81 82
  use_gpu_ = false;

  Update();
83 84
}

85 86 87 88 89 90
void AnalysisConfig::DisableFCPadding() {
  use_fc_padding_ = false;

  Update();
}

91 92 93 94 95 96
void AnalysisConfig::EnableXpu(int l3_workspace_size) {
  use_xpu_ = true;
  xpu_l3_workspace_size_ = l3_workspace_size;
  Update();
}

97
AnalysisConfig::AnalysisConfig(const AnalysisConfig &other) {
98 99 100 101 102 103
#define CP_MEMBER(member__) member__ = other.member__;

  // Model related.
  CP_MEMBER(model_dir_);
  CP_MEMBER(model_from_memory_);  // the memory model reuses prog_file_ and
                                  // params_file_ fields.
104

105
  CP_MEMBER(opt_cache_dir_);
W
Wilber 已提交
106 107
  CP_MEMBER(prog_file_);
  CP_MEMBER(params_file_);
108

109
  CP_MEMBER(use_fc_padding_);
110
  // GPU related.
111
  CP_MEMBER(use_gpu_);
112
  CP_MEMBER(use_cudnn_);
113 114
  CP_MEMBER(device_id_);
  CP_MEMBER(memory_pool_init_size_mb_);
Y
Yan Chunwei 已提交
115 116

  CP_MEMBER(enable_memory_optim_);
S
Sylwester Fraczek 已提交
117
  // TensorRT related.
118 119 120 121
  CP_MEMBER(use_tensorrt_);
  CP_MEMBER(tensorrt_workspace_size_);
  CP_MEMBER(tensorrt_max_batchsize_);
  CP_MEMBER(tensorrt_min_subgraph_size_);
N
nhzlx 已提交
122
  CP_MEMBER(tensorrt_precision_mode_);
N
nhzlx 已提交
123
  CP_MEMBER(trt_use_static_engine_);
124
  CP_MEMBER(trt_use_calib_mode_);
125
  CP_MEMBER(trt_use_oss_);
S
Sylwester Fraczek 已提交
126
  // MKLDNN related.
127 128
  CP_MEMBER(use_mkldnn_);
  CP_MEMBER(mkldnn_enabled_op_types_);
129
  CP_MEMBER(mkldnn_cache_capacity_);
130 131 132
  // Bfloat16 related.
  CP_MEMBER(use_mkldnn_bfloat16_);
  CP_MEMBER(bfloat16_enabled_op_types_);
133 134 135
  // Quantization related.
  CP_MEMBER(use_mkldnn_quantizer_);
  CP_MEMBER(mkldnn_quantizer_config_);
136 137 138
  CP_MEMBER(min_input_shape_);
  CP_MEMBER(max_input_shape_);
  CP_MEMBER(optim_input_shape_);
139
  CP_MEMBER(disable_trt_plugin_fp16_);
140

石晓伟 已提交
141 142 143 144
  CP_MEMBER(use_lite_);
  CP_MEMBER(lite_precision_mode_);
  CP_MEMBER(lite_passes_filter_);
  CP_MEMBER(lite_ops_filter_);
145 146 147 148
  CP_MEMBER(lite_zero_copy_);

  CP_MEMBER(use_xpu_);
  CP_MEMBER(xpu_l3_workspace_size_);
石晓伟 已提交
149

150 151 152
  // profile related.
  CP_MEMBER(with_profile_);

153 154 155
  // glog related.
  CP_MEMBER(with_glog_info_);

156 157 158 159 160 161 162 163 164 165
  // Ir related.
  CP_MEMBER(enable_ir_optim_);
  CP_MEMBER(use_feed_fetch_ops_);
  CP_MEMBER(ir_debug_);
  CP_MEMBER(specify_input_name_);

  CP_MEMBER(cpu_math_library_num_threads_);

  CP_MEMBER(serialized_info_cache_);

166 167
  CP_MEMBER(thread_local_stream_);

168
  if (use_gpu_) {
169 170 171 172 173 174 175
    pass_builder_.reset(new GpuPassStrategy(
        *static_cast<GpuPassStrategy *>(other.pass_builder())));
  } else {
    pass_builder_.reset(new CpuPassStrategy(
        *static_cast<CpuPassStrategy *>(other.pass_builder())));
  }

176
#undef CP_MEMBER
Y
Yan Chunwei 已提交
177

178 179 180 181 182 183 184
  // Update();
  // Update() will reset all the passes, when some tensorRT pass is deleted in
  // other.pass_builder(), it will set again, so just copy the passes.
  pass_builder_->ClearPasses();
  for (const std::string &pass : other.pass_builder()->AllPasses()) {
    pass_builder_->AppendPass(pass);
  }
185 186
}

187 188 189 190 191 192 193 194 195 196 197
void AnalysisConfig::EnableCUDNN() {
#ifdef PADDLE_WITH_CUDA
  use_cudnn_ = use_gpu_;
#else
  LOG(ERROR) << "Please compile with CUDA first to use cuDNN";
  use_cudnn_ = false;
#endif

  Update();
}

198
void AnalysisConfig::EnableMKLDNN() {
199 200 201 202 203 204
#ifdef PADDLE_WITH_MKLDNN
  use_mkldnn_ = true;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MKLDNN";
  use_mkldnn_ = false;
#endif
Y
Yan Chunwei 已提交
205 206

  Update();
207 208
}

209 210 211 212 213 214 215 216 217
void AnalysisConfig::SetMkldnnCacheCapacity(int capacity) {
#ifdef PADDLE_WITH_MKLDNN
  mkldnn_cache_capacity_ = capacity;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to set MKLDNN Thread Id";
  mkldnn_cache_capacity_ = 0;
#endif
}

218 219 220 221 222 223 224 225 226 227 228 229 230
void AnalysisConfig::EnableMkldnnQuantizer() {
#ifdef PADDLE_WITH_MKLDNN
  if (!mkldnn_quantizer_config_)
    mkldnn_quantizer_config_.reset(new MkldnnQuantizerConfig());
  use_mkldnn_quantizer_ = true;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnQuantizer";
  use_mkldnn_quantizer_ = false;
#endif

  Update();
}

231 232
void AnalysisConfig::EnableMkldnnBfloat16() {
#ifdef PADDLE_WITH_MKLDNN
233 234 235 236 237 238
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core)) {
    use_mkldnn_bfloat16_ = true;
  } else {
    LOG(INFO) << "CPU does not support BFLOAT16 calculations";
    use_mkldnn_bfloat16_ = false;
  }
239 240 241 242 243 244 245 246
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnBfloat16";
  use_mkldnn_bfloat16_ = false;
#endif

  Update();
}

247
MkldnnQuantizerConfig *AnalysisConfig::mkldnn_quantizer_config() const {
248
  PADDLE_ENFORCE_NOT_NULL(mkldnn_quantizer_config_,
249 250
                          platform::errors::PreconditionNotMet(
                              "MkldnnQuantizer was not enabled yet."));
251
  return mkldnn_quantizer_config_.get();
252 253
}

254
void AnalysisConfig::EnableTensorRtEngine(
N
nhzlx 已提交
255
    int workspace_size, int max_batch_size, int min_subgraph_size,
256
    AnalysisConfig::Precision precision_mode, bool use_static,
257
    bool use_calib_mode) {
Y
Yan Chunwei 已提交
258 259 260 261 262 263
#ifdef PADDLE_WITH_CUDA
  if (!use_gpu()) {
    LOG(ERROR) << "To use TensorRT engine, please call EnableGpu() first";
    return;
  }

264 265 266
  use_tensorrt_ = true;
  tensorrt_workspace_size_ = workspace_size;
  tensorrt_max_batchsize_ = max_batch_size;
N
nhzlx 已提交
267
  tensorrt_min_subgraph_size_ = min_subgraph_size;
N
nhzlx 已提交
268
  tensorrt_precision_mode_ = precision_mode;
N
nhzlx 已提交
269
  trt_use_static_engine_ = use_static;
270
  trt_use_calib_mode_ = use_calib_mode;
Y
Yan Chunwei 已提交
271

272
  Update();
Y
Yan Chunwei 已提交
273 274 275 276
#else
  LOG(ERROR)
      << "To use TensorRT engine, please compile inference lib with GPU first.";
#endif
277 278
}

279 280 281 282 283 284 285 286 287 288 289
void AnalysisConfig::SetTRTDynamicShapeInfo(
    std::map<std::string, std::vector<int>> min_input_shape,
    std::map<std::string, std::vector<int>> max_input_shape,
    std::map<std::string, std::vector<int>> optim_input_shape,
    bool disable_trt_plugin_fp16) {
  min_input_shape_ = min_input_shape;
  max_input_shape_ = max_input_shape;
  optim_input_shape_ = optim_input_shape;
  disable_trt_plugin_fp16_ = disable_trt_plugin_fp16;
}

290
void AnalysisConfig::EnableTensorRtOSS() { trt_use_oss_ = true; }
291

Y
Yan Chunwei 已提交
292
// TODO(Superjomn) refactor this, buggy.
293
void AnalysisConfig::Update() {
294 295 296
  auto info = SerializeInfoCache();
  if (info == serialized_info_cache_) return;

Y
Yan Chunwei 已提交
297 298 299 300 301 302 303 304 305 306 307 308
  // Transfer pass_builder and copy the existing compatible passes.
  if (!pass_builder_ || ((use_gpu() ^ pass_builder_->use_gpu()))) {
    if (use_gpu()) {
      pass_builder_.reset(new GpuPassStrategy);

      if (use_tensorrt_) {
        // Append after the Affine_channel_conv_fuse pass.
        pass_builder()->InsertPass(3, "tensorrt_subgraph_pass");
      }
    } else {
      pass_builder_.reset(new CpuPassStrategy);
    }
309

310
  } else {
Y
Yan Chunwei 已提交
311 312 313 314 315 316 317 318
    if (use_gpu()) {
      pass_builder_.reset(new GpuPassStrategy(
          *static_cast<GpuPassStrategy *>(pass_builder_.get())));

    } else {
      pass_builder_.reset(new CpuPassStrategy(
          *static_cast<CpuPassStrategy *>(pass_builder_.get())));
    }
319 320 321
  }

  if (use_tensorrt_) {
322 323
    pass_builder()->ClearPasses();
    for (const auto &pass : kTRTSubgraphPasses) {
324
      if (tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8 &&
325 326 327
          (pass == "conv_bn_fuse_pass" || pass == "fc_fuse_pass")) {
        continue;
      }
328
      pass_builder()->AppendPass(pass);
329 330
    }
  }
331 332 333 334 335 336 337 338 339 340
  if (use_gpu() && use_cudnn_) {
#ifdef PADDLE_WITH_CUDA
    if (!enable_ir_optim_) {
      LOG(ERROR) << "EnableCUDNN() only works when IR optimization is enabled.";
    } else {
      pass_builder()->EnableCUDNN();
    }
#endif
  }

341
  if (use_mkldnn_) {
W
Wojciech Uss 已提交
342
#ifdef PADDLE_WITH_MKLDNN
343 344 345
    if (!enable_ir_optim_) {
      LOG(ERROR)
          << "EnableMKLDNN() only works when IR optimization is enabled.";
W
Wojciech Uss 已提交
346 347
    } else {
      pass_builder()->EnableMKLDNN();
348 349 350 351
    }
#endif
  }

352 353 354 355 356
  // Quantization passes must come after all other optimization passes
  if (use_mkldnn_quantizer_) {
    if (!enable_ir_optim_) {
      LOG(ERROR) << "EnableMkldnnQuantizer() only works when IR optimization "
                    "is enabled.";
357 358
    }
#ifdef PADDLE_WITH_MKLDNN
359
    pass_builder()->EnableMkldnnQuantizer();
360 361 362
#endif
  }

363 364 365 366 367 368
  if (use_mkldnn_bfloat16_) {
#ifdef PADDLE_WITH_MKLDNN
    pass_builder()->EnableMkldnnBfloat16();
#endif
  }

369
#ifdef PADDLE_WITH_MKLDNN
370 371
  // Do not optimize when mkldnn is on
  if (enable_memory_optim_ && !use_mkldnn_) {
372
#else
Y
Yan Chunwei 已提交
373
  if (enable_memory_optim_) {
374 375
#endif
    pass_builder()->AppendAnalysisPass("memory_optimize_pass");
Y
Yan Chunwei 已提交
376 377
  }

石晓伟 已提交
378 379 380 381 382 383 384 385 386 387 388 389 390 391
  if (use_lite_) {
#ifndef PADDLE_WITH_LITE
    LOG(WARNING) << "You tried to enable the lite subgraph "
                    "but did not have the option -DWITH_LITE compiled.";
#endif
    pass_builder()->ClearPasses();
    for (const auto &pass : kLiteSubgraphPasses) {
      if (std::find(lite_passes_filter_.begin(), lite_passes_filter_.end(),
                    pass) == lite_passes_filter_.end()) {
        pass_builder()->AppendPass(pass);
      }
    }
  }

392
  if (use_xpu_) {
393
#ifndef LITE_SUBGRAPH_WITH_XPU
394 395 396 397 398 399 400 401 402 403 404 405 406 407
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use an XPU device, but Paddle was not compiled "
        "with XPU-runtime."));
#endif
    if (!use_lite_) {
      LOG(WARNING) << "Because XPU currently only works in Paddle-Lite "
                      "subgraph mode, please make sure you have enabled it.";
    }
    PADDLE_ENFORCE_EQ(use_gpu_, false,
                      platform::errors::Unavailable(
                          "Currently, XPU and GPU cannot be enabled in the "
                          "same analysis configuration."));
  }

408 409 410 411 412
  if (ir_debug_) {
    pass_builder()->TurnOnDebug();
  }
}

413
std::string AnalysisConfig::SerializeInfoCache() {
414
  std::stringstream ss;
Y
Yan Chunwei 已提交
415 416 417 418
  ss << model_dir_;
  ss << prog_file_;
  ss << params_file_;

419
  ss << use_gpu_;
420
  ss << use_fc_padding_;
Y
Yan Chunwei 已提交
421
  ss << device_id_;
422 423 424 425 426
  ss << memory_pool_init_size_mb_;

  ss << use_tensorrt_;
  ss << tensorrt_workspace_size_;
  ss << tensorrt_max_batchsize_;
Y
Yan Chunwei 已提交
427 428 429
  ss << tensorrt_min_subgraph_size_;

  ss << enable_memory_optim_;
430 431

  ss << use_mkldnn_;
432
  ss << mkldnn_cache_capacity_;
Y
Yan Chunwei 已提交
433 434 435
  for (auto &item : mkldnn_enabled_op_types_) ss << item;
  ss << ";";

436
  ss << use_mkldnn_quantizer_;
437
  ss << use_mkldnn_bfloat16_;
438 439
  for (auto &item : bfloat16_enabled_op_types_) ss << item;
  ss << ";";
Y
Yan Chunwei 已提交
440 441
  ss << model_from_memory_;

442 443
  ss << with_profile_;

444 445
  ss << with_glog_info_;

446 447 448 449
  ss << enable_ir_optim_;
  ss << use_feed_fetch_ops_;
  ss << ir_debug_;

Y
Yan Chunwei 已提交
450 451
  ss << specify_input_name_;
  ss << cpu_math_library_num_threads_;
石晓伟 已提交
452 453

  ss << use_lite_;
454 455
  ss << use_xpu_;
  ss << xpu_l3_workspace_size_;
456

457 458
  ss << thread_local_stream_;

459 460 461
  return ss.str();
}

462
void AnalysisConfig::SetCpuMathLibraryNumThreads(
463 464
    int cpu_math_library_num_threads) {
  cpu_math_library_num_threads_ = cpu_math_library_num_threads;
Y
Yan Chunwei 已提交
465 466

  Update();
467 468
}

469
float AnalysisConfig::fraction_of_gpu_memory_for_pool() const {
470 471 472 473
#ifdef PADDLE_WITH_CUDA
  // Get the GPU memory details and calculate the fraction of memory for the
  // GPU memory pool.
  size_t gpu_used, gpu_available;
474
  platform::SetDeviceId(device_id_);
475 476 477 478 479 480 481 482
  platform::GpuMemoryUsage(&gpu_used, &gpu_available);
  double total_gpu_memory = (gpu_used + gpu_available) / 1024. / 1024.;
  float fraction_of_gpu_memory =
      static_cast<double>(memory_pool_init_size_mb()) / total_gpu_memory;
  return fraction_of_gpu_memory;
#else
  return 0.;
#endif
483 484
}

485
void AnalysisConfig::EnableMemoryOptim() {
Y
Yan Chunwei 已提交
486 487 488 489
  enable_memory_optim_ = true;
  Update();
}

490
bool AnalysisConfig::enable_memory_optim() const {
Y
Yan Chunwei 已提交
491 492 493
  return enable_memory_optim_;
}

494 495 496 497
void AnalysisConfig::SetModelBuffer(const char *prog_buffer,
                                    size_t prog_buffer_size,
                                    const char *param_buffer,
                                    size_t param_buffer_size) {
498 499
  prog_file_ = std::string(prog_buffer, prog_buffer + prog_buffer_size);
  params_file_ = std::string(param_buffer, param_buffer + param_buffer_size);
T
Tao Luo 已提交
500
  model_from_memory_ = true;
Y
Yan Chunwei 已提交
501 502

  Update();
T
Tao Luo 已提交
503 504
}

505
NativeConfig AnalysisConfig::ToNativeConfig() const {
Y
Yan Chunwei 已提交
506 507 508 509 510 511 512 513 514 515 516
  NativeConfig config;
  config.model_dir = model_dir_;
  config.prog_file = prog_file_;
  config.param_file = params_file_;
  config.use_gpu = use_gpu_;
  config.device = device_id_;
  config.fraction_of_gpu_memory = fraction_of_gpu_memory_for_pool();
  config.specify_input_name = specify_input_name_;
  return config;
}

Y
Yan Chunwei 已提交
517 518 519 520
void AnalysisConfig::SwitchIrDebug(int x) {
  ir_debug_ = x;
  Update();
}
521 522 523 524 525 526

void AnalysisConfig::EnableProfile() {
  with_profile_ = true;
  Update();
}

527 528 529 530 531
void AnalysisConfig::DisableGlogInfo() {
  with_glog_info_ = false;
  Update();
}

石晓伟 已提交
532
void AnalysisConfig::EnableLiteEngine(
533
    AnalysisConfig::Precision precision_mode, bool zero_copy,
石晓伟 已提交
534 535 536 537 538 539
    const std::vector<std::string> &passes_filter,
    const std::vector<std::string> &ops_filter) {
  use_lite_ = true;
  lite_precision_mode_ = precision_mode;
  lite_passes_filter_ = passes_filter;
  lite_ops_filter_ = ops_filter;
540
  lite_zero_copy_ = zero_copy;
石晓伟 已提交
541 542 543
  Update();
}

544 545 546 547 548 549 550
void AnalysisConfig::PartiallyRelease() {
  prog_file_.clear();
  prog_file_.shrink_to_fit();
  params_file_.clear();
  params_file_.shrink_to_fit();
}

551 552
void AnalysisConfig::EnableGpuMultiStream() { thread_local_stream_ = true; }

553
}  // namespace paddle