lock_free_optimize_pass.cc 12.6 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/ir/lock_free_optimize_pass.h"

#include <string>
#include <unordered_set>
#include <vector>

#include "paddle/fluid/framework/ir/node.h"
#include "paddle/fluid/framework/op_proto_maker.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace framework {
namespace ir {

const char kSumGradOpName[] = "sum";
// TODO(minqiyang): only support sgd at current time, please add
// other optimizers later.
const char kOptimizerType[] = "sgd";

std::unique_ptr<ir::Graph> LockFreeOptimizePass::ApplyImpl(
    std::unique_ptr<ir::Graph> graph) const {
  PADDLE_ENFORCE(graph.get());

  // We could collect all weights' name from SGD, where
  // W1 <- SGD(W0, Grad0)
  std::unordered_set<std::string> weight_var_set;
  for (auto* node : graph->Nodes()) {
    if (IsOpNamed(node, kOptimizerType)) {
      auto& param_out_vars = node->Op()->Output("ParamOut");
      PADDLE_ENFORCE(param_out_vars.size() == 1u);
      weight_var_set.insert(param_out_vars[0]);
    }
  }

  // find all grad's merge op via weight name, where
  // Grad0 <- SUM(Grad1, Grad2, Grad3 ...)
  std::unordered_set<ir::Node*> grad_sum_op_set;
  for (ir::Node* node : graph->Nodes()) {
    if (IsOpNamed(node, kSumGradOpName)) {
      for (ir::Node* output : node->outputs) {
        // strip the last grad suffix @GRAD
        std::string var_name = output->Name();
        const std::string suffix(kGradVarSuffix);
        if (var_name != suffix && var_name.size() > suffix.size() &&
            var_name.substr(var_name.size() - suffix.size()) == suffix) {
          // if so then strip them off
          var_name = var_name.substr(0, var_name.size() - suffix.size());
          if (weight_var_set.find(var_name) != weight_var_set.end()) {
            grad_sum_op_set.insert(node);
            break;
          }
        }
      }
    }
  }

  // get the forward op and backward op pairs, where
  // out <- forward(X, W)
  // Grad1 <- backward(out, X')
  // Grad0 <- SUM(Grad1, Grad2, Grad3 ...)
  // W0 <- SGD(W1, Grad0)
  for (ir::Node* node : grad_sum_op_set) {
    for (ir::Node* merged_grad_var : node->outputs) {
      // find the optimizers connected with sum op
      if (IsVarNameEndsWith(merged_grad_var, kGradVarSuffix) &&
          merged_grad_var->outputs.size() == 1u) {
        ir::Node* opt_node = merged_grad_var->outputs[0];
        LOG(ERROR) << "Found opt node " << opt_node->Name();

        // find the backward op connected with sum op
        for (ir::Node* unmerged_grad_var : node->inputs) {
          if (IsVarNameContains(unmerged_grad_var, kGradVarSuffix) &&
              unmerged_grad_var->inputs.size() == 1u) {
            ir::Node* backward_op = unmerged_grad_var->inputs[0];

            LOG(ERROR) << "Found backward_op " << backward_op->Name();

            // find the forward op related to the backward op
            ir::Node* forward_op =
                FindForwardOpViaBackwardOp(graph.get(), backward_op);

            LOG(ERROR) << "Found forward_op " << forward_op->Name();

            PADDLE_ENFORCE(forward_op);

            Node* new_optimizer_node = CreateNewSGDNode(
                graph.get(), forward_op, backward_op, node, opt_node);

            PADDLE_ENFORCE(new_optimizer_node);
          }
        }
      }
    }
  }

  // Remove the sum_op and its' outputs and connected Optimizers
  for (Node* sum_op : grad_sum_op_set) {
    for (Node* sum_op_output : sum_op->outputs) {
      for (Node* optimize_op : sum_op_output->outputs) {
        if (optimize_op->NodeType() == Node::Type::kOperation &&
            optimize_op->Name() == kOptimizerType) {
          LOG(ERROR) << "remove optimize_op: " << optimize_op->Name() << "_"
                     << optimize_op->id();
          graph->RemoveNode(optimize_op);
        }
      }
      LOG(ERROR) << "remove sum_op_output: " << sum_op_output->Name() << "_"
                 << sum_op_output->id();
      graph->RemoveNode(sum_op_output);
    }
    LOG(ERROR) << "remove sum_op: " << sum_op->Name() << "_" << sum_op->id();
    graph->RemoveNode(sum_op);
  }

  for (auto* node : graph->Nodes()) {
    for (Node* output_node : node->outputs) {
      if (output_node->Name() == "sgd") {
        LOG(ERROR) << "Node link to SGD: " << node->Name() << "_" << node->id()
                   << " --> " << output_node->Name() << "_"
                   << output_node->id();
        for (Node* input_node : node->inputs) {
          LOG(ERROR) << "SGD Input link: " << input_node->Name() << "_"
                     << input_node->id() << " --> " << node->Name() << "_"
                     << node->id();
        }
      }
    }
  }

  return graph;
}

ir::Node* LockFreeOptimizePass::CreateNewSGDNode(
    ir::Graph* graph, ir::Node* forward_node, ir::Node* backward_node,
    ir::Node* grad_sum_node, ir::Node* optimize_node) const {
  PADDLE_ENFORCE(graph);
  PADDLE_ENFORCE(forward_node);
  PADDLE_ENFORCE(backward_node);
  PADDLE_ENFORCE(grad_sum_node);
  PADDLE_ENFORCE(optimize_node);

  // find the grad var node between the grad sum node and backward_node
  std::vector<ir::Node*> grad_vars =
      FindConnectedNode(backward_node, grad_sum_node);
  ir::Node* grad_node = nullptr;
  for (ir::Node* node : grad_vars) {
    if (!ir::IsControlDepVar(*node)) {
      grad_node = node;
    }
  }
  PADDLE_ENFORCE(grad_node);

  // create a new SGD node
  OpDesc* old_desc = optimize_node->Op();
  // keep with the same block between new optimizer and the old one
  OpDesc new_desc(*old_desc, old_desc->Block());
  new_desc.SetInput("Param", old_desc->Input("Param"));
  new_desc.SetInput("LearningRate", old_desc->Input("LearningRate"));
  new_desc.SetInput("Grad", std::vector<std::string>({grad_node->Name()}));
  new_desc.SetOutput("ParamOut", old_desc->Output("ParamOut"));

  std::vector<std::string> op_role_vars = boost::get<std::vector<std::string>>(
      new_desc.GetAttr(framework::OpProtoAndCheckerMaker::OpRoleVarAttrName()));
  // replace the second op role var, because the grad name was
  // changed in new optimizer
  op_role_vars.pop_back();
  op_role_vars.push_back(grad_node->Name());
  new_desc.SetAttr(framework::OpProtoAndCheckerMaker::OpRoleVarAttrName(),
                   op_role_vars);
  new_desc.SetType(kOptimizerType);

  // set backward op's op role var, this will be used to
  // set device_id in multi_device_pass
  backward_node->Op()->SetAttr(
      framework::OpProtoAndCheckerMaker::OpRoleVarAttrName(), op_role_vars);
  // backward_node->Op()->SetAttr(
  // framework::OpProtoAndCheckerMaker::OpRoleVarAttrName(), {});

  // keep with the same output nodes between new optimizer and the
  // old one
  Node* sgd_node = graph->CreateOpNode(&new_desc);

  // change all outputs of the optimize_node to the new one
  ReplaceAllDownstreamNode(optimize_node, sgd_node);

  // find connected node between forward node and optimize node
  // and replace the optimize node to new sgd node
  std::vector<ir::Node*> forward_opt_connected_nodes =
      FindConnectedNode(forward_node, optimize_node);
  for (ir::Node* node : forward_opt_connected_nodes) {
    ReplaceUpstreamNode(node, optimize_node, sgd_node);
  }

  // find connected node between backward node and optimize node
  // and replace the optimize node to new sgd node
  std::vector<ir::Node*> backward_opt_connected_nodes =
      FindConnectedNode(backward_node, optimize_node);
  for (ir::Node* node : backward_opt_connected_nodes) {
    ReplaceUpstreamNode(node, optimize_node, sgd_node);
  }

  // SGD must have only one param and LR in
  PADDLE_ENFORCE(old_desc->Input("LearningRate").size() == 1u);
  PADDLE_ENFORCE(old_desc->Input("Param").size() == 1u);

  // LR and weight nodes should be copied
  for (Node* upstream_node : optimize_node->inputs) {
    if (upstream_node->Name() == old_desc->Input("LearningRate")[0] ||
        upstream_node->Name() == old_desc->Input("Param")[0]) {
      ReplaceUpstreamNode(upstream_node, optimize_node, sgd_node);
    }
  }

  LOG(ERROR) << "Create new opt node" << sgd_node->Name() << "_"
             << sgd_node->id();

  return sgd_node;
}

std::vector<ir::Node*> LockFreeOptimizePass::FindConnectedNode(
    ir::Node* upstream_node, ir::Node* downstream_node) const {
  std::vector<ir::Node*> result;
  for (ir::Node* out_node : upstream_node->outputs) {
    for (ir::Node* in_node : downstream_node->inputs) {
      if (in_node == out_node) {
        result.push_back(in_node);
      }
    }
  }

  return result;
}

void LockFreeOptimizePass::ReplaceUpstreamNode(
    ir::Node* upstream_node, ir::Node* old_optimizer_node,
    ir::Node* new_optimizer_node) const {
  PADDLE_ENFORCE(upstream_node);
  PADDLE_ENFORCE(old_optimizer_node);
  PADDLE_ENFORCE(new_optimizer_node);

  // Remove the old_optimizer_node from upstream_node's outputs vector
  auto& output_node_vec = upstream_node->outputs;
  for (auto output_node_iter = output_node_vec.begin();
       output_node_iter != output_node_vec.end();) {
    if (*output_node_iter == old_optimizer_node) {
      output_node_vec.erase(output_node_iter);
      break;
    } else {
      ++output_node_iter;
    }
  }

  // Add the new_optimizer_node to upstream_node's outputs vector
  output_node_vec.emplace_back(new_optimizer_node);
  new_optimizer_node->inputs.emplace_back(upstream_node);
}

void LockFreeOptimizePass::ReplaceAllDownstreamNode(
    ir::Node* old_optimizer_node, ir::Node* new_optimizer_node) const {
  PADDLE_ENFORCE(old_optimizer_node);
  PADDLE_ENFORCE(new_optimizer_node);

  for (ir::Node* downstream_node : old_optimizer_node->outputs) {
    // Remove the old_optimizer_node from downstream_node's inputs vector
    auto& input_node_vec = downstream_node->inputs;
    for (auto input_node_iter = input_node_vec.begin();
         input_node_iter != input_node_vec.end();) {
      if (*input_node_iter == old_optimizer_node) {
        input_node_vec.erase(input_node_iter);
        break;
      } else {
        ++input_node_iter;
      }
    }

    // Add the new_optimizer_node to downstream_node's inputs vector
    input_node_vec.emplace_back(new_optimizer_node);
    new_optimizer_node->outputs.emplace_back(downstream_node);
  }
}

ir::Node* LockFreeOptimizePass::FindForwardOpViaBackwardOp(
    ir::Graph* graph, ir::Node* backward_node) const {
  PADDLE_ENFORCE(graph);
  PADDLE_ENFORCE(backward_node);

  // strip the suffix _grad of backward_node's name
  std::string forward_op_name = backward_node->Name();
  const std::string suffix("_grad");
  if (forward_op_name != suffix && forward_op_name.size() > suffix.size() &&
      forward_op_name.substr(forward_op_name.size() - suffix.size()) ==
          suffix) {
    // if so then strip them off
    forward_op_name =
        forward_op_name.substr(0, forward_op_name.size() - suffix.size());
  } else {
    LOG(WARNING) << "Illegal backward node's name " << backward_node->Name()
                 << " id " << backward_node->id();

    return nullptr;
  }

  for (ir::Node* node : graph->Nodes()) {
    if (node->Name() == forward_op_name) {
      if (node->outputs.size() == 0u) {
        // if forward_node has no output, then it has NO grad op
        continue;
      }

      // check whether all inputs of the backward_op that ends_with @GRAD
      // comes from the output of forward_op is the input of the backward_op
      bool is_related_forward_node = true;
      for (ir::Node* backward_input : backward_node->inputs) {
        if (IsVarNameEndsWith(backward_input, kGradVarSuffix)) {
          bool meets_correct_output = false;
          for (ir::Node* forward_output : node->outputs) {
            if (forward_output->Name() + kGradVarSuffix ==
                backward_input->Name()) {
              meets_correct_output = true;
              break;
            }
          }

          if (!meets_correct_output) {
            is_related_forward_node = false;
            break;
          }
        }
      }

      if (is_related_forward_node) {
        return node;
      }
    }
  }

  return nullptr;
}

}  // namespace ir
}  // namespace framework
}  // namespace paddle

REGISTER_PASS(lock_free_optimize_pass,
              paddle::framework::ir::LockFreeOptimizePass);