TensorCheck.h 2.6 KB
Newer Older
H
hedaoyuan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <cmath>
#include <gtest/gtest.h>
#include "paddle/math/Matrix.h"

using namespace paddle;  // NOLINT
using namespace std;     // NOLINT

namespace autotest {

24
class AssertEqual {
H
hedaoyuan 已提交
25
public:
26
  AssertEqual(real err = 0) : err_(err) {}
H
hedaoyuan 已提交
27

28 29 30 31 32 33 34 35 36 37
  inline bool operator()(real a, real b) {
    if (err_ == 0) {
      if (a != b) {
        return false;
      }
    } else {
      if (std::fabs(a - b) > err_) {
        if ((std::fabs(a - b) / std::fabs(a)) > (err_ / 10.0f)) {
          return false;
        }
H
hedaoyuan 已提交
38 39
      }
    }
40
    return true;
H
hedaoyuan 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
  }

private:
  real err_;
};

template <typename Tensor>
class CopyToCpu;

template <>
class CopyToCpu<CpuMatrix> {
public:
  explicit CopyToCpu(const CpuMatrix& arg) : arg_(arg) {}
  const CpuMatrix& copiedArg() const { return arg_; }

private:
  const CpuMatrix& arg_;
};

template <>
class CopyToCpu<GpuMatrix> {
public:
  explicit CopyToCpu(const GpuMatrix& arg)
    : arg_(arg.getHeight(), arg.getWidth()) {
    arg_.copyFrom(arg);
  }
  CpuMatrix& copiedArg() { return arg_; }

private:
  CpuMatrix arg_;
};

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
template<typename AssertEq>
void TensorCheck(AssertEq compare,
                 const CpuMatrix& matrix1,
                 const CpuMatrix& matrix2) {
  CHECK(matrix1.getHeight() == matrix2.getHeight());
  CHECK(matrix1.getWidth() == matrix2.getWidth());

  int height = matrix1.getHeight();
  int width = matrix1.getWidth();
  const real* data1 = matrix1.getData();
  const real* data2 = matrix2.getData();
  int count = 0;
  for (int i = 0; i < height; i++) {
    for (int j = 0; j < width; j++) {
      real a = data1[i * width + j];
      real b = data2[i * width + j];
      if (!compare(a, b)) {
        count++;
      }
    }
  }
  EXPECT_EQ(count, 0) << "There are " << count << " different element.";
}

template<typename AssertEq, typename Tensor1, typename Tensor2>
extern void TensorCheck(AssertEq compare,
                        const Tensor1& tensor1,
                        const Tensor2& tensor2) {
H
hedaoyuan 已提交
101
  TensorCheck(
102
    compare,
H
hedaoyuan 已提交
103 104 105 106 107 108
    CopyToCpu<Tensor1>(tensor1).copiedArg(),
    CopyToCpu<Tensor2>(tensor2).copiedArg());
}

}  // namespace autotest