distributed_fused_lamb_op.cu 54.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <cmath>
#include "paddle/fluid/memory/buffer.h"
17
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
18 19
#include "paddle/fluid/operators/optimizers/cast_with_ptr.h"
#include "paddle/fluid/operators/optimizers/distributed_fused_lamb_op.h"
20
#include "paddle/fluid/operators/optimizers/multi_tensor_apply.h"
21 22 23 24 25
#include "paddle/fluid/operators/tensor_to_string.h"
#include "paddle/fluid/platform/aligned_vector.h"
#include "paddle/fluid/platform/collective_helper.h"
#include "paddle/fluid/platform/for_range.h"
#include "paddle/fluid/string/string_helper.h"
26
#include "paddle/phi/core/utils/data_type.h"
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

#ifdef __NVCC__
#include "cub/cub.cuh"
#include "math.h"  // NOLINT
#endif

#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
#include "math.h"  // NOLINT
namespace cub = hipcub;
#endif

namespace paddle {
namespace operators {

template <typename T>
using MasterT = typename details::MPTypeTrait<T>::Type;

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
template <typename T>
static void FillZeroWithPtr(T *x, size_t n, gpuStream_t stream) {
  static_assert(!std::is_same<T, void>::value, "T cannot be void.");
#ifdef PADDLE_WITH_HIP
  PADDLE_ENFORCE_GPU_SUCCESS(hipMemsetAsync(x, 0, n * sizeof(T), stream));
#else
  PADDLE_ENFORCE_GPU_SUCCESS(cudaMemsetAsync(x, 0, n * sizeof(T), stream));
#endif
}

template <typename T, int BlockDim, int VecSize>
struct L2NormFunctor {
  DEVICE void operator()(int tensor_id, int chunk_id, int offset, int size,
                         const T *x, MasterT<T> *y, int max_chunk_num) const {
    using MT = MasterT<T>;
    const T *ptr = x + offset;

    using BlockReduce = cub::BlockReduce<MT, BlockDim>;
    __shared__ typename BlockReduce::TempStorage storage;

    MT square_sum = static_cast<MT>(0);
    int i;
    for (i = threadIdx.x * VecSize; i + VecSize <= size;
         i += (BlockDim * VecSize)) {
      platform::AlignedVector<T, VecSize> tmp_vec;
      platform::Load(ptr + i, &tmp_vec);
#pragma unroll
      for (int j = 0; j < VecSize; ++j) {
        auto tmp = static_cast<MT>(tmp_vec[j]);
        square_sum += (tmp * tmp);
      }
    }

    for (; i < size; ++i) {
      auto tmp = static_cast<MT>(ptr[i]);
      square_sum += (tmp * tmp);
    }

    square_sum = BlockReduce(storage).Reduce(square_sum, cub::Sum());
    if (threadIdx.x == 0) {
      y[tensor_id * max_chunk_num + chunk_id] = square_sum;
    }
  }
};

template <typename InT, typename OutT, int BlockDim, bool NeedSqrt>
static __global__ void MultiTensorL2NormReduceAgainCUDAKernel(
    const InT *x, OutT *y, int max_chunk_num) {
  int tensor_id = blockIdx.x;
  x += (tensor_id * max_chunk_num);
  using BlockReduce = cub::BlockReduce<InT, BlockDim>;
  __shared__ typename BlockReduce::TempStorage storage;
  InT sum = static_cast<InT>(0);
  for (int i = threadIdx.x; i < max_chunk_num; i += BlockDim) {
    sum += x[i];
  }
  sum = BlockReduce(storage).Reduce(sum, cub::Sum());
  if (threadIdx.x == 0) {
    if (NeedSqrt) {
      y[blockIdx.x] = static_cast<OutT>(sqrtf(sum));
    } else {
      y[blockIdx.x] = static_cast<OutT>(sum);
    }
  }
}

template <typename T>
static int GetChunkedVecSize(const T *ptr, int chunk_size) {
  static_assert(!std::is_same<T, void>::value, "T cannot be void.");

  constexpr int max_load_bits = 128;
  int valid_vec_size = max_load_bits / CHAR_BIT / sizeof(T);
  auto address = reinterpret_cast<uintptr_t>(ptr);
  constexpr int vec8 = alignof(platform::AlignedVector<T, 8>);
  constexpr int vec4 = alignof(platform::AlignedVector<T, 4>);
  constexpr int vec2 = alignof(platform::AlignedVector<T, 2>);
  if (address % vec8 == 0 && chunk_size % vec8 == 0) {
    return std::min(8, valid_vec_size);
  } else if (address % vec4 == 0 && chunk_size % vec4 == 0) {
    return std::min(4, valid_vec_size);
  } else if (address % vec2 == 0 && chunk_size % vec2 == 0) {
    return std::min(2, valid_vec_size);
  } else {
    return 1;
  }
}

#define PD_VEC_MULTI_TENSOR_APPLY_CASE(__vec_size, ...) \
  case __vec_size: {                                    \
    constexpr int kVecSize = __vec_size;                \
    __VA_ARGS__;                                        \
    break;                                              \
  }

#define PD_VEC_MULTI_TENSOR_APPLY(__vec_size, ...)    \
  do {                                                \
    switch (__vec_size) {                             \
      PD_VEC_MULTI_TENSOR_APPLY_CASE(8, __VA_ARGS__); \
      PD_VEC_MULTI_TENSOR_APPLY_CASE(4, __VA_ARGS__); \
      PD_VEC_MULTI_TENSOR_APPLY_CASE(2, __VA_ARGS__); \
      PD_VEC_MULTI_TENSOR_APPLY_CASE(1, __VA_ARGS__); \
    }                                                 \
  } while (0)

// TODO(zengjinle): which chunk_size is better?
template <typename InT, typename OutT, bool NeedSqrt = false,
          int MaxTensorNumPerLaunch = 50, int MaxChunkNumPerLaunch = 680,
          int BlockDim = 512>
static void MultiTensorL2Norm(const platform::CUDAPlace &place,
                              gpuStream_t stream, const InT *x,
                              const int *offsets, int n, OutT *y,
                              int chunk_size = 65536) {
  if (n <= 0) return;

  constexpr int kNumTensor = MaxTensorNumPerLaunch;
  constexpr int kNumChunk = MaxChunkNumPerLaunch;
  constexpr int kBlockDim = BlockDim;

  int max_chunk_num = -1;
  int vec_size = 8;
  int total_chunk_num = 0;
  for (int i = 0; i < n; ++i) {
    vec_size = std::min(
        vec_size, GetChunkedVecSize(x + offsets[i] - offsets[0], chunk_size));
    int length = offsets[i + 1] - offsets[i];
    auto tmp_chunk_num = (length + chunk_size - 1) / chunk_size;
    max_chunk_num = std::max(max_chunk_num, tmp_chunk_num);
    total_chunk_num += tmp_chunk_num;
  }

  VLOG(1) << "MultiTensorL2Norm max_chunk_num = " << max_chunk_num
          << " , total_chunk_num = " << total_chunk_num
          << " , tensor_num = " << n;

  using MT = MasterT<InT>;
  memory::Buffer tmp_out(place);
  auto *tmp_out_ptr = tmp_out.Alloc<MT>(n * max_chunk_num);
  FillZeroWithPtr(tmp_out_ptr, n * max_chunk_num, stream);

#define PD_LAUNCH_MULTI_TENSOR_APPLY_KERNEL                         \
  do {                                                              \
    using FunctorT = L2NormFunctor<InT, kBlockDim, kVecSize>;       \
    VLOG(10) << __func__ << " " << typeid(InT).name()               \
             << " VecSize = " << kVecSize;                          \
    MultiTensorApply<FunctorT, kBlockDim, kNumTensor, kNumChunk>(   \
        FunctorT(), stream, offsets, n, chunk_size, x, tmp_out_ptr, \
        max_chunk_num);                                             \
  } while (0)

  PD_VEC_MULTI_TENSOR_APPLY(vec_size, PD_LAUNCH_MULTI_TENSOR_APPLY_KERNEL);
#undef PD_LAUNCH_MULTI_TENSOR_APPLY_KERNEL

  MultiTensorL2NormReduceAgainCUDAKernel<MT, OutT, kBlockDim,
                                         NeedSqrt><<<n, kBlockDim, 0, stream>>>(
      tmp_out_ptr, y, max_chunk_num);
}

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
template <int LogLevel>
static void LogParamAndTrustRatioDivSquareNorm(
    const framework::ExecutionContext &ctx, const float *param_square_norm,
    const float *trust_ratio_div_square_norm) {
  if (!VLOG_IS_ON(LogLevel)) return;

  auto tensors = ctx.MultiInput<framework::Tensor>("Param");
  if (tensors.empty()) return;

  size_t n = tensors.size();
  auto place = tensors[0]->place();

  auto pn_vec = ToVector(param_square_norm, n, place);
  auto tn_vec = ToVector(trust_ratio_div_square_norm, n, place);

  std::vector<size_t> fp32_indices, fp16_indices;
  fp32_indices.reserve(n);
  fp16_indices.reserve(n);
  for (size_t i = 0; i < n; ++i) {
    const auto *t = tensors[i];
222
    if (t->dtype() == phi::DataType::FLOAT32) {
223
      fp32_indices.push_back(i);
224
    } else if (t->dtype() == phi::DataType::FLOAT16) {
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
      fp16_indices.push_back(i);
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Unsupported data type %s.", t->dtype()));
    }
  }

  for (auto idx : fp16_indices) {
    fp32_indices.push_back(idx);
  }

  const auto &names = ctx.GetOp().Inputs("Param");
  for (size_t i = 0; i < fp32_indices.size(); ++i) {
    auto idx = fp32_indices[i];
    VLOG(LogLevel) << "Param " << tensors[idx]->dtype() << " " << names[idx]
                   << " pn = " << pn_vec[i] << " , tn = " << tn_vec[i];
  }
}

static bool IsFinite(const platform::CUDADeviceContext &dev_ctx,
                     const float *ptr) {
  auto stream = dev_ctx.stream();
  float cpu_value;
#ifdef PADDLE_WITH_HIP
  PADDLE_ENFORCE_GPU_SUCCESS(hipMemcpyAsync(&cpu_value, ptr, sizeof(float),
                                            hipMemcpyDeviceToHost, stream));
  PADDLE_ENFORCE_GPU_SUCCESS(hipStreamSynchronize(stream));
#else
  PADDLE_ENFORCE_GPU_SUCCESS(cudaMemcpyAsync(&cpu_value, ptr, sizeof(float),
                                             cudaMemcpyDeviceToHost, stream));
  PADDLE_ENFORCE_GPU_SUCCESS(cudaStreamSynchronize(stream));
#endif
  LOG(INFO) << "NAN_INF indicator value: " << cpu_value;
  return isfinite(cpu_value);
}

template <typename T>
static const T *GetInputTensorPtr(const framework::ExecutionContext &ctx,
                                  const char *in_name,
                                  int64_t *numel = nullptr) {
  const auto *in_tensor = ctx.Input<framework::Tensor>(in_name);
  PADDLE_ENFORCE_NOT_NULL(in_tensor, platform::errors::InvalidArgument(
                                         "Input(%s) cannot be NULL.", in_name));
  if (in_tensor->IsInitialized()) {
    if (numel) *numel = in_tensor->numel();
    return in_tensor->data<T>();
  } else {
    if (numel) *numel = 0;
    return nullptr;
  }
}

template <typename T, bool AllowNotExist = false>
static T *GetSameInOutTensorPtr(const framework::ExecutionContext &ctx,
                                const platform::Place &place,
                                const char *in_name, const char *out_name,
                                int64_t *numel = nullptr) {
  const auto *in_tensor = ctx.Input<framework::Tensor>(in_name);
  if (in_tensor == nullptr || !in_tensor->IsInitialized()) {
    PADDLE_ENFORCE_EQ(AllowNotExist, true,
                      platform::errors::InvalidArgument(
                          "Input(%s) cannot be NULL.", in_name));
    if (numel) *numel = 0;
    return nullptr;
  }

  auto *out_tensor = ctx.Output<framework::Tensor>(out_name);
  PADDLE_ENFORCE_NOT_NULL(in_tensor, platform::errors::InvalidArgument(
                                         "Input(%s) cannot be NULL.", in_name));
  PADDLE_ENFORCE_NOT_NULL(out_tensor,
                          platform::errors::InvalidArgument(
                              "Output(%s) cannot be NULL.", out_name));
  const T *in_data = in_tensor->data<T>();
  T *out_data = out_tensor->mutable_data<T>(place);
  PADDLE_ENFORCE_EQ(in_data, out_data,
                    platform::errors::InvalidArgument(
                        "Input(%s) and Output(%s) must be the same Tensor.",
                        in_name, out_name));
  if (numel) *numel = out_tensor->numel();
  return out_data;
}

template <typename T>
struct SquareFunctor {
  HOSTDEVICE MasterT<T> operator()(T x) const {
    auto y = static_cast<MasterT<T>>(x);
    return y * y;
  }
};

template <typename T>
struct IsNanInfFunctor {
  HOSTDEVICE bool operator()(T x) const { return !isfinite(x); }
};

struct OrFunctor {
  HOSTDEVICE bool operator()(bool x, bool y) const { return x || y; }
};

struct AndFunctor {
  HOSTDEVICE bool operator()(bool x, bool y) const { return x && y; }
};

template <typename T1, typename T2>
static __global__ void ScaleCUDAKernel(const T1 *__restrict__ x,
                                       const T2 *__restrict__ scale,
                                       T1 *__restrict__ y, int num) {
  static_assert(sizeof(T1) <= sizeof(T2),
                "sizeof(T1) must be not greater than sizeof(T2).");
  T2 s = scale[0];
  CUDA_KERNEL_LOOP(i, num) {
    y[i] = static_cast<T1>(static_cast<T2>(x[i]) * s);
  }
}

template <typename T>
static __global__ void AddToCUDAKernel(const T *__restrict__ x,
                                       T *__restrict__ y) {
  y[0] += x[0];
}

// If clip before allreduce,
// coeff = global_scale * max_global_grad_norm / (1e-6 + sqrt(square_grad_norm)
// * rescale_grad)
// if coeff >= 1 or coeff is Nan/Inf, scale = 1.0
// else scale = coeff
template <typename T1, typename T2>
static __global__ void CalcGradNormClipBeforeAllReduceScale(
    const T1 *__restrict__ global_scale, T1 max_global_grad_norm,
    const T1 *__restrict__ square_grad_norm, T1 *__restrict__ out1,
    T2 *__restrict__ out2, T1 clip_rescale_grad) {
  T1 grad_norm = static_cast<T1>(sqrt(*square_grad_norm)) * clip_rescale_grad;
  T1 scale = global_scale[0] * max_global_grad_norm / (1e-6 + grad_norm);
  bool found_nan_inf = !isfinite(scale);
  if (scale >= 1 || found_nan_inf) {
    scale = static_cast<T1>(1.0);
  }

  if (out1) {
    *out1 = scale;
  }
  if (out2) {
    *out2 = static_cast<T2>(scale);
  }
}

static __global__ void SetNanInfValueCUDAKernelOneFlag(const bool *in_flag_p,
                                                       float *out_p) {
  *out_p = (*in_flag_p) ? __int_as_float(0x7fffffffU) : 0.0f;
}

static __global__ void SetNanInfValueCUDAKernelTwoFlag(const bool *in_flag_p_1,
                                                       const bool *in_flag_p_2,
                                                       float *out_p) {
  *out_p =
      ((*in_flag_p_1) || (*in_flag_p_2)) ? __int_as_float(0x7fffffffU) : 0.0f;
}

// TODO(zengjinle): Vectorize this function
// NOTE: this method does not update Beta1Pow and Beta2Pow!
template <typename T, typename GradT, typename IndexT>
static __global__ void UpdateLambMoment(
    const T *__restrict__ param_p, const GradT *__restrict__ grad_p,
    const T *__restrict__ square_grad_norm_p,
    const T *__restrict__ global_scale, const IndexT *__restrict__ indices,
    const T *__restrict__ weight_decay_p, const T *__restrict__ beta1pow_p,
    const T *__restrict__ beta2pow_p, T *__restrict__ mom1_p,
    T *__restrict__ mom2_p, T *__restrict__ trust_ratio_div_p, T beta1, T beta2,
    T epsilon, T max_global_grad_norm, int num, T rescale_grad) {
  T square_grad_norm = *square_grad_norm_p;
  if (!isfinite(square_grad_norm)) return;

  T scale = rescale_grad / global_scale[0];
  if (max_global_grad_norm > 0) {
    T clip_scale =
        max_global_grad_norm / (sqrtf(square_grad_norm) * scale + 1e-6);
    if (clip_scale < static_cast<T>(1)) {
      scale *= clip_scale;
    }
  }

  T one_minus_beta1pow = 1 - beta1pow_p[0];
  T one_minus_beta2pow = 1 - beta2pow_p[0];

  CUDA_KERNEL_LOOP(i, num) {
    T p = param_p[i];
    T g = static_cast<T>(grad_p[i]) * scale;
    T weight_decay = weight_decay_p[i];
    T mom1 = mom1_p[i];
    T mom2 = mom2_p[i];

    mom1 = beta1 * mom1 + (1 - beta1) * g;
    mom2 = beta2 * mom2 + (1 - beta2) * g * g;

    T mom1_unbiased = mom1 / one_minus_beta1pow;
    T mom2_unbiased = mom2 / one_minus_beta2pow;
    T trust_ratio_div =
        mom1_unbiased / (sqrtf(mom2_unbiased) + epsilon) + weight_decay * p;

    mom1_p[i] = mom1;
    mom2_p[i] = mom2;
    trust_ratio_div_p[i] = trust_ratio_div;
  }
}

template <typename T, bool NeedUpdate /*=true*/>
struct LambBetaPowUpdateOnceHelper {
  LambBetaPowUpdateOnceHelper(T *beta1pow, T *beta2pow, T beta1, T beta2) {
    PADDLE_ENFORCE_NOT_NULL(beta1pow,
                            platform::errors::InvalidArgument(
                                "The beta1pow should not be nullptr."));
    PADDLE_ENFORCE_NOT_NULL(beta2pow,
                            platform::errors::InvalidArgument(
                                "The beta2pow should not be nullptr."));
    beta1pow_ = beta1pow;
    beta2pow_ = beta2pow;
    beta1_ = beta1;
    beta2_ = beta2;
  }

  HOSTDEVICE void UpdateBetaPows() const {
    beta1pow_[0] *= beta1_;
    beta2pow_[0] *= beta2_;
  }

 private:
  T *__restrict__ beta1pow_;
  T *__restrict__ beta2pow_;
  T beta1_;
  T beta2_;
};

template <typename T>
struct LambBetaPowUpdateOnceHelper<T, false> {
  LambBetaPowUpdateOnceHelper(T *beta1pow, T *beta2pow, T beta1, T beta2) {
    PADDLE_ENFORCE_EQ(
        beta1pow, nullptr,
        platform::errors::InvalidArgument("The beta1pow should be nullptr."));
    PADDLE_ENFORCE_EQ(
        beta2pow, nullptr,
        platform::errors::InvalidArgument("The beta2pow should be nullptr."));
  }

  HOSTDEVICE void UpdateBetaPows() const {}
};

template <bool HasFoundInf /*=true*/>
struct LambFoundInfHelper {
 public:
  explicit LambFoundInfHelper(bool *found_inf) : found_inf_(found_inf) {
    PADDLE_ENFORCE_NOT_NULL(found_inf,
                            platform::errors::InvalidArgument(
                                "The found_inf should not be nullptr."));
  }

  HOSTDEVICE void UpdateFoundInf(bool value) { *found_inf_ = value; }

 private:
  bool *__restrict__ found_inf_;
};

template <>
struct LambFoundInfHelper<false> {
 public:
  explicit LambFoundInfHelper(bool *found_inf) {
    PADDLE_ENFORCE_EQ(
        found_inf, nullptr,
        platform::errors::InvalidArgument("The found_inf should be nullptr."));
  }

  HOSTDEVICE void UpdateFoundInf(bool) {}
};

template <typename T, bool HasMasterParam /*=true*/>
struct LambParamHelper {
  LambParamHelper(T *param, MasterT<T> *master_param) {
    constexpr bool kIsSameType = std::is_same<T, MasterT<T>>::value;
    PADDLE_ENFORCE_EQ(kIsSameType, false,
                      platform::errors::InvalidArgument(
                          "T must not be the same with MasterT<T>."));
    PADDLE_ENFORCE_NOT_NULL(master_param,
                            platform::errors::InvalidArgument(
                                "Master parameter must be provided."));
    param_ = param;
    master_param_ = master_param;
  }

  HOSTDEVICE void SetParam(int i, MasterT<T> updated_p) {
    param_[i] = static_cast<T>(updated_p);
    master_param_[i] = updated_p;
  }

  HOSTDEVICE MasterT<T> GetParam(int i) { return master_param_[i]; }

 private:
  T *__restrict__ param_;
  MasterT<T> *__restrict__ master_param_;
};

template <typename T>
struct LambParamHelper<T, false> {
  LambParamHelper(T *param, MasterT<T> *master_param) {
    constexpr bool kIsSameType = std::is_same<T, MasterT<T>>::value;
    PADDLE_ENFORCE_EQ(kIsSameType, true,
                      platform::errors::InvalidArgument(
                          "T must be the same with MasterT<T>."));
    if (master_param != nullptr) {
      PADDLE_ENFORCE_EQ(static_cast<void *>(param),
                        static_cast<void *>(master_param),
                        platform::errors::InvalidArgument(
                            "Master parameter must be nullptr or the same as "
                            "non-master parameter."));
    }
    param_ = param;
  }

  HOSTDEVICE void SetParam(int i, MasterT<T> updated_p) {
    param_[i] = static_cast<T>(updated_p);
  }

  HOSTDEVICE MasterT<T> GetParam(int i) {
    return static_cast<MasterT<T>>(param_[i]);
  }

 private:
  T *__restrict__ param_;
};

template <typename ParamT, typename IndexT, bool HasMasterParam,
          bool NeedUpdateBetaPow, bool HasFoundInf>
struct LambParamAndBetaPowsUpdateHelper
    : public LambParamHelper<ParamT, HasMasterParam>,
      public LambBetaPowUpdateOnceHelper<MasterT<ParamT>, NeedUpdateBetaPow>,
      public LambFoundInfHelper<HasFoundInf> {
  LambParamAndBetaPowsUpdateHelper(
      ParamT *param, MasterT<ParamT> *master_param, MasterT<ParamT> *beta1pow,
      MasterT<ParamT> *beta2pow, MasterT<ParamT> beta1, MasterT<ParamT> beta2,
      bool *found_inf, const MasterT<ParamT> *trust_ratio_div,
      const MasterT<ParamT> *lr, const IndexT *index,
      const MasterT<ParamT> *param_square_norm,
      const MasterT<ParamT> *trust_ratio_div_square_norm,
      const MasterT<ParamT> *update_flag)
      : LambParamHelper<ParamT, HasMasterParam>(param, master_param),
        LambBetaPowUpdateOnceHelper<MasterT<ParamT>, NeedUpdateBetaPow>(
            beta1pow, beta2pow, beta1, beta2),
        LambFoundInfHelper<HasFoundInf>(found_inf),
        trust_ratio_div(trust_ratio_div),
        lr(lr),
        index(index),
        param_square_norm(param_square_norm),
        trust_ratio_div_square_norm(trust_ratio_div_square_norm),
        update_flag(update_flag) {}

  const MasterT<ParamT> *__restrict__ trust_ratio_div;
  const MasterT<ParamT> *__restrict__ lr;
  const IndexT *__restrict__ index;
  const MasterT<ParamT> *__restrict__ param_square_norm;
  const MasterT<ParamT> *__restrict__ trust_ratio_div_square_norm;
  const MasterT<ParamT> *__restrict__ update_flag;
};

template <typename ParamT, typename IndexT, bool HasMasterParam,
          bool NeedUpdateBetaPow, bool HasFoundInf>
static __global__ void LambUpdateParamAndBetaPowsCUDAKernel(
    LambParamAndBetaPowsUpdateHelper<ParamT, IndexT, HasMasterParam,
                                     NeedUpdateBetaPow, HasFoundInf>
        args,
    int num) {
  auto should_update = *args.update_flag;
  if (!isfinite(should_update)) {
    if (HasFoundInf && threadIdx.x == 0 && blockIdx.x == 0) {
      args.UpdateFoundInf(true);
    }
    return;
  } else if (HasFoundInf && threadIdx.x == 0 && blockIdx.x == 0) {
    args.UpdateFoundInf(false);
  }

  if (NeedUpdateBetaPow && threadIdx.x == 0 && blockIdx.x == 0) {
    args.UpdateBetaPows();
  }

  using MT = MasterT<ParamT>;

  MT lr_value = *args.lr;
  CUDA_KERNEL_LOOP(i, num) {
    MT p = args.GetParam(i);
    MT t = args.trust_ratio_div[i];
    auto norm_idx = args.index[i];
    MT p_square_norm = args.param_square_norm[norm_idx];
    MT t_square_norm = args.trust_ratio_div_square_norm[norm_idx];

    MT p_norm = static_cast<MT>(sqrtf(p_square_norm));
    MT t_norm = static_cast<MT>(sqrtf(t_square_norm));

    auto update = (p_norm != static_cast<MT>(0) && t_norm != static_cast<MT>(0))
                      ? p_norm / t_norm
                      : static_cast<MT>(1);

    MT updated_p = p - lr_value * update * t;
    args.SetParam(i, updated_p);
  }
}

template <typename ParamT, typename IndexT>
static void LambUpdateParamAndBetaPows(
    const platform::CUDADeviceContext &dev_ctx,
    const MasterT<ParamT> *trust_ratio_div, const MasterT<ParamT> *lr,
    const IndexT *index, const MasterT<ParamT> *param_square_norm,
    const MasterT<ParamT> *trust_ratio_div_square_norm,
    const MasterT<ParamT> *update_flag, MasterT<ParamT> **beta1pow,
    MasterT<ParamT> **beta2pow, bool **found_inf, MasterT<ParamT> beta1,
    MasterT<ParamT> beta2, int num, ParamT *param,
    MasterT<ParamT> *master_param, gpuStream_t stream) {
  if (num == 0) return;

  bool has_master_param = !(std::is_same<ParamT, MasterT<ParamT>>::value);
  auto has_beta_pow = (*beta1pow) != nullptr && (*beta2pow) != nullptr;
  auto has_found_inf = (*found_inf) != nullptr;

#define PADDLE_LAUNCH_LAMB_UPDATE_PARAM_KERNEL(                              \
    __has_master_param, __has_beta_pow, __has_found_inf)                     \
  do {                                                                       \
    LambParamAndBetaPowsUpdateHelper<ParamT, IndexT, __has_master_param,     \
                                     __has_beta_pow, __has_found_inf>        \
        helper(param, master_param, *beta1pow, *beta2pow, beta1, beta2,      \
               *found_inf, trust_ratio_div, lr, index, param_square_norm,    \
               trust_ratio_div_square_norm, update_flag);                    \
    auto config = platform::GetGpuLaunchConfig1D(dev_ctx, num);              \
    LambUpdateParamAndBetaPowsCUDAKernel<<<                                  \
        config.block_per_grid, config.thread_per_block, 0, stream>>>(helper, \
                                                                     num);   \
  } while (0)

  if (has_master_param) {
    if (has_beta_pow) {
      if (has_found_inf) {
        PADDLE_LAUNCH_LAMB_UPDATE_PARAM_KERNEL(true, true, true);
      } else {
        PADDLE_LAUNCH_LAMB_UPDATE_PARAM_KERNEL(true, true, false);
      }
    } else {
      if (has_found_inf) {
        PADDLE_LAUNCH_LAMB_UPDATE_PARAM_KERNEL(true, false, true);
      } else {
        PADDLE_LAUNCH_LAMB_UPDATE_PARAM_KERNEL(true, false, false);
      }
    }
  } else {
    if (has_beta_pow) {
      if (has_found_inf) {
        PADDLE_LAUNCH_LAMB_UPDATE_PARAM_KERNEL(false, true, true);
      } else {
        PADDLE_LAUNCH_LAMB_UPDATE_PARAM_KERNEL(false, true, false);
      }
    } else {
      if (has_found_inf) {
        PADDLE_LAUNCH_LAMB_UPDATE_PARAM_KERNEL(false, false, true);
      } else {
        PADDLE_LAUNCH_LAMB_UPDATE_PARAM_KERNEL(false, false, false);
      }
    }
  }

  *beta1pow = nullptr;
  *beta2pow = nullptr;
  *found_inf = nullptr;
#undef PADDLE_LAUNCH_LAMB_UPDATE_PARAM_KERNEL
}

#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
static bool CreatePreMulScaleOpIfSupported(ncclDataType_t dtype,
                                           ncclComm_t comm, const void *scale,
                                           ncclRedOp_t *op) {
#if NCCL_VERSION_CODE >= 21100
  int ver;
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetVersion(&ver));
  if (ver >= 21100) {
    VLOG(10) << "ncclRedOpCreatePreMulSum is supported.";
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRedOpCreatePreMulSum(
        op, const_cast<void *>(scale), dtype, ncclScalarDevice, comm));
    return true;
  }
#endif
  VLOG(10) << "ncclRedOpCreatePreMulSum is not supported.";
  return false;
}

template <typename T>
static void NCCLReduceScatterWithScale(
    const T *sendbuff, T *recvbuff, size_t recvcount, size_t nranks,
    ncclComm_t comm, gpuStream_t stream,
    const platform::CUDADeviceContext &dev_ctx, const T *scale = nullptr) {
  static_assert(std::is_same<T, float>::value ||
                    std::is_same<T, platform::float16>::value,
                "T must be either float32 or float16.");
  if (recvcount == 0) return;

  if (comm == nullptr) {
    if (scale != nullptr) {
      PADDLE_ENFORCE_EQ(nranks, 1,
                        platform::errors::InvalidArgument(
                            "nranks must be 1 when scale != nullptr."));
      auto numel = recvcount * nranks;
      auto config = platform::GetGpuLaunchConfig1D(dev_ctx, numel);
      ScaleCUDAKernel<<<config.block_per_grid, config.thread_per_block, 0,
                        stream>>>(sendbuff, scale, recvbuff, numel);
    }
    return;
  }

  ncclRedOp_t op = ncclSum;
  ncclDataType_t dtype =
      std::is_same<T, float>::value ? ncclFloat32 : ncclFloat16;
  bool should_destroy_op =
      scale && CreatePreMulScaleOpIfSupported(dtype, comm, scale, &op);
  memory::Buffer buffer(dev_ctx.GetPlace());
  if (scale && !should_destroy_op) {
    size_t numel = recvcount * nranks;
    T *new_sendbuff = buffer.Alloc<T>(numel);
    auto config = platform::GetGpuLaunchConfig1D(dev_ctx, numel);
    ScaleCUDAKernel<<<config.block_per_grid, config.thread_per_block, 0,
                      stream>>>(sendbuff, scale, new_sendbuff, numel);
    sendbuff = new_sendbuff;
  }

  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclReduceScatter(
      sendbuff, recvbuff, recvcount, dtype, op, comm, stream));

#if NCCL_VERSION_CODE >= 21100
  if (should_destroy_op) {
    VLOG(10) << "ncclRedOpDestroy starts";
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclRedOpDestroy(op, comm));
    VLOG(10) << "ncclRedOpDestroy ends";
  }
#endif
}
#endif

template <typename InputIteratorT, typename OutputIteratorT, typename ReduceOpT,
          typename T>
static void CubDeviceReduce(InputIteratorT d_in, OutputIteratorT d_out,
                            int num_items, ReduceOpT reduction_op, T init,
                            gpuStream_t stream, memory::Buffer *buffer) {
  void *d_temp_storage = nullptr;
  size_t temp_storage_bytes = 0;
  PADDLE_ENFORCE_GPU_SUCCESS(
      cub::DeviceReduce::Reduce(d_temp_storage, temp_storage_bytes, d_in, d_out,
                                num_items, reduction_op, init, stream));
  d_temp_storage = buffer->Alloc<void>(temp_storage_bytes);
  VLOG(10) << "cub::DeviceReduce::Reduce needs " << temp_storage_bytes
           << " byte(s), ptr = " << d_temp_storage;
  PADDLE_ENFORCE_GPU_SUCCESS(
      cub::DeviceReduce::Reduce(d_temp_storage, temp_storage_bytes, d_in, d_out,
                                num_items, reduction_op, init, stream));
}

template <typename T>
static void GetSquareGradNormImpl(const T *grad, int n, float *square_norm,
                                  gpuStream_t stream,
                                  memory::Buffer *cub_tmp_buffer) {
  using Iterator =
      cub::TransformInputIterator<float, SquareFunctor<T>, const T *>;
  Iterator iter(grad, SquareFunctor<T>());
  CubDeviceReduce(iter, square_norm, n, cub::Sum(), static_cast<float>(0),
                  stream, cub_tmp_buffer);
}

// square_norm is of length 2 at least
static void GetSquareGradNorm(const float *fp32_grad, int fp32_numel,
                              const platform::float16 *fp16_grad,
                              int fp16_numel, float *square_norm,
                              gpuStream_t stream,
                              memory::Buffer *cub_tmp_buffer) {
  VLOG(10) << "GetSquareGradNorm starts, fp32_numel = " << fp32_numel
           << " , fp16_numel = " << fp16_numel;
  if (fp32_numel > 0) {
    GetSquareGradNormImpl(fp32_grad, fp32_numel, square_norm, stream,
                          cub_tmp_buffer);
    VLOG(10) << "FP32 square L2-Norm: "
             << FlattenToString(square_norm, 1, cub_tmp_buffer->GetPlace());
  }

  if (fp16_numel > 0) {
    float *fp16_square_norm = fp32_numel > 0 ? square_norm + 1 : square_norm;
    GetSquareGradNormImpl(fp16_grad, fp16_numel, fp16_square_norm, stream,
                          cub_tmp_buffer);
    VLOG(10) << "FP16 square L2-Norm: "
             << FlattenToString(fp16_square_norm, 1,
                                cub_tmp_buffer->GetPlace());
    if (fp32_numel > 0) {
      AddToCUDAKernel<<<1, 1, 0, stream>>>(fp16_square_norm, square_norm);
      VLOG(10) << "FP32+FP16 square L2-Norm: "
               << FlattenToString(square_norm, 1, cub_tmp_buffer->GetPlace());
    }
  }
  VLOG(10) << "GetSquareGradNorm ends, fp32_numel = " << fp32_numel
           << " , fp16_numel = " << fp16_numel;
}

template <typename T>
std::string NumToString(T x) {
  std::stringstream ss;
  ss << x;
  return ss.str();
}

template <typename T>
static std::string GetMinMaxStr(const T *x, size_t n,
                                const platform::Place &place) {
  PADDLE_ENFORCE_EQ(
      platform::is_gpu_place(place), true,
      platform::errors::InvalidArgument("Only support CUDAPlace currently."));

  auto *dev_ctx = static_cast<platform::CUDADeviceContext *>(
      platform::DeviceContextPool::Instance().Get(place));
  auto stream = dev_ctx->stream();

  memory::Buffer ret_buffer(place);
  T *ret = ret_buffer.Alloc<T>(2);

  if (n > 0) {
    memory::Buffer cub_buffer(place);
    CubDeviceReduce(x, ret, n, cub::Min(), std::numeric_limits<T>::max(),
                    stream, &cub_buffer);
    CubDeviceReduce(x, ret + 1, n, cub::Max(), std::numeric_limits<T>::lowest(),
                    stream, &cub_buffer);
    T ret_cpu[2];
#ifdef PADDLE_WITH_HIP
    PADDLE_ENFORCE_GPU_SUCCESS(hipMemcpyAsync(&ret_cpu[0], ret, 2 * sizeof(T),
                                              hipMemcpyDeviceToHost, stream));
    PADDLE_ENFORCE_GPU_SUCCESS(hipStreamSynchronize(stream));
#else
    PADDLE_ENFORCE_GPU_SUCCESS(cudaMemcpyAsync(&ret_cpu[0], ret, 2 * sizeof(T),
                                               cudaMemcpyDeviceToHost, stream));
    PADDLE_ENFORCE_GPU_SUCCESS(cudaStreamSynchronize(stream));
#endif
    return std::string("{\"min\": ") + NumToString(ret_cpu[0]) +
           " , \"max\": " + NumToString(ret_cpu[1]) + "}";
  } else {
    return "{\"min\": null, \"max\": null}";
  }
}

struct VisitDTypeFunctor {
  VisitDTypeFunctor(const framework::Tensor *x, std::string *s)
      : x_(x), s_(s) {}

  template <typename T>
  void apply() const {
    *s_ = GetMinMaxStr<T>(x_->template data<T>(), x_->numel(), x_->place());
  }

 private:
  const framework::Tensor *x_;
  std::string *s_;
};

static std::string GetMinMaxStr(const framework::Tensor *x) {
  if (x == nullptr) return "null";
  if (!x->IsInitialized()) return "not_inited";
  if (!platform::is_gpu_place(x->place())) return "CPUTensor";
  std::string str;
  VisitDTypeFunctor functor(x, &str);
889
  phi::VisitDataType(x->dtype(), functor);
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
  return str;
}

static void PrintAllMinMaxRange(const framework::ExecutionContext &ctx,
                                bool only_inputs) {
  if (!VLOG_IS_ON(1)) return;
  for (const auto &pair : ctx.GetOp().Inputs()) {
    const auto &key = pair.first;
    const auto tensors = ctx.MultiInput<framework::Tensor>(key);
    size_t n = tensors.size();
    for (size_t i = 0; i < n; ++i) {
      VLOG(1) << "Input(" << key + ")[" << i << "] = " << pair.second[i]
              << " , " << GetMinMaxStr(tensors[i]);
    }
  }

  if (only_inputs) return;
  for (const auto &pair : ctx.GetOp().Outputs()) {
    const auto &key = pair.first;
    const auto tensors = ctx.MultiOutput<framework::Tensor>(key);
    size_t n = tensors.size();
    for (size_t i = 0; i < n; ++i) {
      VLOG(1) << "Output(" << key + ")[" << i << "] = " << pair.second[i]
              << " , " << GetMinMaxStr(tensors[i]);
    }
  }
}

static void CheckHasNanInfGrad(const float *fp32_grad, int fp32_numel,
                               const platform::float16 *fp16_grad,
                               int fp16_numel, float *nan_inf_flag,
                               gpuStream_t stream,
                               memory::Buffer *cub_tmp_buffer) {
  bool *fp32_has_nan_inf = nullptr;
  bool *fp16_has_nan_inf = nullptr;
  if (fp32_numel > 0) {
    fp32_has_nan_inf = reinterpret_cast<bool *>(nan_inf_flag + 1);
    cub::TransformInputIterator<bool, IsNanInfFunctor<float>, const float *>
    iter(fp32_grad, IsNanInfFunctor<float>());
    CubDeviceReduce(iter, fp32_has_nan_inf, fp32_numel, OrFunctor(), false,
                    stream, cub_tmp_buffer);
  }

  if (fp16_numel > 0) {
    fp16_has_nan_inf = reinterpret_cast<bool *>(nan_inf_flag + 1) + 1;
    cub::TransformInputIterator<bool, IsNanInfFunctor<platform::float16>,
                                const platform::float16 *>
        iter(fp16_grad, IsNanInfFunctor<platform::float16>());
    CubDeviceReduce(iter, fp16_has_nan_inf, fp16_numel, OrFunctor(), false,
                    stream, cub_tmp_buffer);
  }

  if (fp32_has_nan_inf && fp16_has_nan_inf) {
    SetNanInfValueCUDAKernelTwoFlag<<<1, 1, 0, stream>>>(
        fp32_has_nan_inf, fp16_has_nan_inf, nan_inf_flag);
  } else if (fp32_has_nan_inf) {
    SetNanInfValueCUDAKernelOneFlag<<<1, 1, 0, stream>>>(fp32_has_nan_inf,
                                                         nan_inf_flag);
  } else {
    SetNanInfValueCUDAKernelOneFlag<<<1, 1, 0, stream>>>(fp16_has_nan_inf,
                                                         nan_inf_flag);
  }
}

template <typename T>
class DistributedFusedLambOpKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
    auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto stream = dev_ctx.stream();
    auto place = dev_ctx.GetPlace();

    // Step 1: Get fp16 param and grad tensors
    int64_t fp16_numel;
    auto *fp16_param = GetSameInOutTensorPtr<platform::float16, true>(
        ctx, place, "FP16FusedParam", "FP16FusedParamOut", &fp16_numel);
    bool has_fp16_param = (fp16_numel > 0);
    const platform::float16 *fp16_grad = nullptr;
    if (has_fp16_param) {
      fp16_grad = GetInputTensorPtr<platform::float16>(ctx, "FP16FusedGrad");
    } else {
      fp16_param = nullptr;
    }

    // Step 2: Get fp32 param and grad tensors
    int64_t fp32_numel = 0;
    auto *fp32_param = GetSameInOutTensorPtr<float, true>(
        ctx, place, "FP32FusedParam", "FP32FusedParamOut", &fp32_numel);
    PADDLE_ENFORCE_GE(fp32_numel, fp16_numel,
                      platform::errors::InvalidArgument(
                          "The element number in FP32FusedParam should be not "
                          "less than FP16FusedParam."));

    fp32_numel -= fp16_numel;  // the FP32FusedParam contains fp32 param and
                               // fp16 master weight
    bool has_fp32_param = (fp32_numel > 0);
    const float *fp32_grad = nullptr;
    if (has_fp32_param) {
      fp32_grad = GetInputTensorPtr<float>(ctx, "FP32FusedGrad");
    } else {
      PADDLE_ENFORCE_EQ(
          has_fp16_param, true,
          platform::errors::InvalidArgument(
              "Either FP32FusedGrad or FP16FusedGrad cannot be NULL."));
    }

    auto numel = fp32_numel + fp16_numel;
    VLOG(1) << "numel = " << numel << " , fp32_numel = " << fp32_numel
            << " , fp16_numel = " << fp16_numel;

    // The NVIDIA cub library does not support number > INT32_MAX
    PADDLE_ENFORCE_LE(numel, std::numeric_limits<int>::max(),
                      platform::errors::Unimplemented(
                          "Too many parameter number. Only <= %d is supported.",
                          std::numeric_limits<int>::max()));

    // Step 3: Get FusedIndices, ParamInfo
    const auto *indices = GetInputTensorPtr<int>(ctx, "FusedIndices");
    const auto *param_info_tensor = GetInputTensorPtr<int>(ctx, "ParamInfo");
    auto fp32_local_start_idx = param_info_tensor[0];
    auto fp32_local_param_num = param_info_tensor[1];
    auto fp32_global_param_num = param_info_tensor[2];
    auto fp16_local_start_idx = param_info_tensor[3];
    auto fp16_local_param_num = param_info_tensor[4];
    auto fp16_global_param_num = param_info_tensor[5];

    auto local_param_num = fp32_local_param_num + fp16_local_param_num;
    auto param_num = fp32_global_param_num + fp16_global_param_num;
    PADDLE_ENFORCE_LE(local_param_num, param_num,
                      platform::errors::InvalidArgument(
                          "The local parameter number should not exceed the "
                          "global parameter number."));
    VLOG(1) << "local_param_num = " << local_param_num
            << " , global_param_num = " << param_num
            << " , fp32_local_start_idx = " << fp32_local_start_idx
            << " , fp32_local_param_num = " << fp32_local_param_num
            << " , fp32_global_param_num = " << fp32_global_param_num
            << " , fp16_local_start_idx = " << fp16_local_start_idx
            << " , fp16_local_param_num = " << fp16_local_param_num
            << " , fp16_global_param_num = " << fp16_global_param_num;

    // Step 4: Get LearningRate, Moment1, Moment2, Beta1Pow, Beta2Pow,
    // WeightDecay, GlobalScale, FoundInf
    const auto *global_scale = GetInputTensorPtr<float>(ctx, "GlobalScale");
    const auto *lr = GetInputTensorPtr<float>(ctx, "LearningRate");
    int64_t partial_numel = 0;
    auto *moment1 = GetSameInOutTensorPtr<float>(ctx, place, "Moment1",
                                                 "Moment1Out", &partial_numel);

    PADDLE_ENFORCE_EQ(numel % partial_numel, 0,
                      platform::errors::InvalidArgument(
                          "The total parameter number %d should be divided "
                          "exactly by the element number %d of Moment1.",
                          numel, partial_numel));

    int64_t num_devices = numel / partial_numel;
    VLOG(1) << "num_devices = " << num_devices
            << " , partial_numel = " << partial_numel;

    PADDLE_ENFORCE_EQ(fp32_numel % num_devices, 0,
                      platform::errors::InvalidArgument(
                          "The fp32 parameter number %d should be divided "
                          "exactly by the device number %d.",
                          fp32_numel, num_devices));
    PADDLE_ENFORCE_EQ(fp16_numel % num_devices, 0,
                      platform::errors::InvalidArgument(
                          "The fp16 parameter number %d should be divided "
                          "exactly by the device number %d.",
                          fp16_numel, num_devices));

    auto *moment2 =
        GetSameInOutTensorPtr<float>(ctx, place, "Moment2", "Moment2Out");
    auto *beta1pow =
        GetSameInOutTensorPtr<float>(ctx, place, "Beta1Pow", "Beta1PowOut");
    auto *beta2pow =
        GetSameInOutTensorPtr<float>(ctx, place, "Beta2Pow", "Beta2PowOut");
    const float *weight_decay = GetInputTensorPtr<float>(ctx, "WeightDecay");

    auto *found_inf_t = ctx.Output<framework::Tensor>("FoundInf");
    found_inf_t->Resize({1});
    auto *found_inf = found_inf_t->mutable_data<bool>(place);

    // Step 5: Get attributes beta1, beta2, epsilon, max_grad_norm, ring_id,
    // use_master_param_norm, is_grad_scaled_by_nranks
    auto beta1 = ctx.Attr<float>("beta1");
    auto beta2 = ctx.Attr<float>("beta2");
    auto epsilon = ctx.Attr<float>("epsilon");
    auto max_global_grad_norm = ctx.Attr<float>("max_global_grad_norm");
    auto clip_after_allreduce = ctx.Attr<bool>("clip_after_allreduce");
    auto ring_id = ctx.Attr<int>("ring_id");
    auto use_master_param_norm = ctx.Attr<bool>("use_master_param_norm");
    auto is_grad_scaled_by_nranks = ctx.Attr<bool>("is_grad_scaled_by_nranks");
    VLOG(10) << "max_global_grad_norm = " << max_global_grad_norm
             << " , clip_after_allreduce = " << clip_after_allreduce
             << " , use_master_param_norm = " << use_master_param_norm
             << " , is_grad_scaled_by_nranks = " << is_grad_scaled_by_nranks;

    // Step 6: allreduce + global norm gradient clip
    int rank = 0;
    ncclComm_t comm = nullptr;
    if (num_devices > 1) {
      auto *nccl_comm_handle =
          platform::NCCLCommContext::Instance().Get(ring_id, place);
      comm = nccl_comm_handle->comm();
      rank = nccl_comm_handle->rank();
    }

    memory::Buffer grad_norm_square_buffer(place);
    auto *fp32_square_grad_norm = grad_norm_square_buffer.Alloc<float>(2);
    memory::Buffer cub_tmp_buffer(place);

    memory::Buffer sum_grad_buffer(place);
    float *fp32_sum_grad;
    platform::float16 *fp16_sum_grad;
    auto fp32_numel_each_device = fp32_numel / num_devices;
    auto fp16_numel_each_device = fp16_numel / num_devices;
    if (num_devices > 1) {
      auto ptr = sum_grad_buffer.Alloc<uint8_t>(
          fp32_numel_each_device * sizeof(float) +
          fp16_numel_each_device * sizeof(platform::float16));
      fp32_sum_grad = has_fp32_param ? reinterpret_cast<float *>(ptr) : nullptr;
      fp16_sum_grad = has_fp16_param
                          ? reinterpret_cast<platform::float16 *>(
                                ptr + fp32_numel_each_device * sizeof(float))
                          : nullptr;
    } else {
      // NOTE: The const_cast here is not important. The fp32_sum_grad and
      // fp16_sum_grad would not be changed when num_devices == 1
      // But if I do not perform const_cast here, there would be more
      // if-else codes (num_devices > 1) when I write the following code.
      // So I prefer to use const_cast to unify the following code to reduce
      // the if-else codes.
      fp32_sum_grad = const_cast<float *>(fp32_grad);
      fp16_sum_grad = const_cast<platform::float16 *>(fp16_grad);
    }

    float rescale_grad = 1.0f;
    if (!is_grad_scaled_by_nranks) {
      rescale_grad /= num_devices;
    }

    if (max_global_grad_norm > 0) {
      if (clip_after_allreduce) {
        // (1) ReduceScater first
        NCCLReduceScatterWithScale(fp32_grad, fp32_sum_grad,
                                   fp32_numel_each_device, num_devices, comm,
                                   stream, dev_ctx);
        NCCLReduceScatterWithScale(fp16_grad, fp16_sum_grad,
                                   fp16_numel_each_device, num_devices, comm,
                                   stream, dev_ctx);
        // (2) Calculate the global grad norm
        GetSquareGradNorm(fp32_sum_grad, fp32_numel_each_device, fp16_sum_grad,
                          fp16_numel_each_device, fp32_square_grad_norm, stream,
                          &cub_tmp_buffer);
        VLOG(1) << "Grad square norm before all reduce: "
                << FlattenToString(fp32_square_grad_norm, 1, place);
        if (num_devices > 1) {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclAllReduce(
              fp32_square_grad_norm, fp32_square_grad_norm, 1, ncclFloat32,
              ncclSum, comm, stream));
        }
        VLOG(1) << "Grad square norm after all reduce: "
                << FlattenToString(fp32_square_grad_norm, 1, place);
      } else {
        // (1) Calculate the local grad norm
        GetSquareGradNorm(fp32_grad, fp32_numel, fp16_grad, fp16_numel,
                          fp32_square_grad_norm, stream, &cub_tmp_buffer);
        VLOG(1) << "Grad square norm before all reduce: "
                << FlattenToString(fp32_square_grad_norm, 1, place);
        // (2) Calculate the gradient clip scale
        float *fp32_scale = nullptr;
        platform::float16 *fp16_scale = nullptr;
        if (has_fp32_param && has_fp16_param) {
          auto *ptr = cub_tmp_buffer.Alloc<uint8_t>(sizeof(float) +
                                                    sizeof(platform::float16));
          fp32_scale = reinterpret_cast<float *>(ptr);
          fp16_scale =
              reinterpret_cast<platform::float16 *>(ptr + sizeof(float));
        } else if (has_fp32_param) {
          fp32_scale = cub_tmp_buffer.Alloc<float>(1);
        } else {
          fp16_scale = cub_tmp_buffer.Alloc<platform::float16>(1);
        }

        float clip_scale = 1.0f;
        if (is_grad_scaled_by_nranks) {
          clip_scale *= num_devices;
        }
        CalcGradNormClipBeforeAllReduceScale<
            float, platform::float16><<<1, 1, 0, stream>>>(
            global_scale, max_global_grad_norm, fp32_square_grad_norm,
            fp32_scale, fp16_scale, clip_scale);
        VLOG(1) << "Grad scale: " << FlattenToString(fp32_scale, 1, place);
        if (num_devices > 1) {
          PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclAllReduce(
              fp32_square_grad_norm, fp32_square_grad_norm, 1, ncclFloat32,
              ncclSum, comm, stream));
        }
        // (3) Do ReduceScatter with scale
        NCCLReduceScatterWithScale(fp32_grad, fp32_sum_grad,
                                   fp32_numel_each_device, num_devices, comm,
                                   stream, dev_ctx, fp32_scale);
        NCCLReduceScatterWithScale(fp16_grad, fp16_sum_grad,
                                   fp16_numel_each_device, num_devices, comm,
                                   stream, dev_ctx, fp16_scale);
        // (4) mark max_global_grad_norm as 0, meaning that clip has been
        // already performed
        max_global_grad_norm = 0;
      }
    } else {
      NCCLReduceScatterWithScale(fp32_grad, fp32_sum_grad,
                                 fp32_numel_each_device, num_devices, comm,
                                 stream, dev_ctx);
      NCCLReduceScatterWithScale(fp16_grad, fp16_sum_grad,
                                 fp16_numel_each_device, num_devices, comm,
                                 stream, dev_ctx);
      CheckHasNanInfGrad(fp32_sum_grad, fp32_numel_each_device, fp16_sum_grad,
                         fp16_numel_each_device, fp32_square_grad_norm, stream,
                         &cub_tmp_buffer);
      if (num_devices > 1) {
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclAllReduce(
            fp32_square_grad_norm, fp32_square_grad_norm, 1, ncclFloat32,
            ncclSum, comm, stream));
      }
      max_global_grad_norm = 0;
    }
    VLOG(10) << "ReduceScatter done";

    // Step 7: update the moment1, moment2. Calcuate the trust_ratio_div
    memory::Buffer trust_ratio_div_buffer(place);
    auto *trust_ratio_div = trust_ratio_div_buffer.Alloc<float>(partial_numel);
    auto fp32_offset = rank * fp32_numel_each_device;
    auto fp16_offset = rank * fp16_numel_each_device;
    if (has_fp32_param) {
      auto config =
          platform::GetGpuLaunchConfig1D(dev_ctx, fp32_numel_each_device);
      VLOG(10) << "Update FP32 Moment and TrustRatioDiv starts";
      UpdateLambMoment<<<config.block_per_grid, config.thread_per_block, 0,
                         stream>>>(
          fp32_param + fp32_offset, fp32_sum_grad, fp32_square_grad_norm,
          global_scale, indices + fp32_offset, weight_decay, beta1pow, beta2pow,
          moment1, moment2, trust_ratio_div, beta1, beta2, epsilon,
          max_global_grad_norm, fp32_numel_each_device, rescale_grad);
      VLOG(10) << "Update FP32 Moment and TrustRatioDiv done";
    }
    float *master_param = nullptr;
    if (has_fp16_param) {
      master_param = fp32_param + fp32_numel;
      auto config =
          platform::GetGpuLaunchConfig1D(dev_ctx, fp16_numel_each_device);
      VLOG(10) << "Update FP16 Moment and TrustRatioDiv starts";
      UpdateLambMoment<<<config.block_per_grid, config.thread_per_block, 0,
                         stream>>>(
          master_param + fp16_offset, fp16_sum_grad, fp32_square_grad_norm,
          global_scale, indices + fp32_numel + fp16_offset, weight_decay,
          beta1pow, beta2pow, moment1 + fp32_numel_each_device,
          moment2 + fp32_numel_each_device,
          trust_ratio_div + fp32_numel_each_device, beta1, beta2, epsilon,
          max_global_grad_norm, fp16_numel_each_device, rescale_grad);
      VLOG(10) << "Update FP16 Moment and TrustRatioDiv done";
    }

    VLOG(10) << "Update Moment and TrustRatioDiv done hehahaha";

    // Step 8: calculate L2-Norm square of parameter and trust_ratio_div
    memory::Buffer square_norm_buffer(place);
    auto *param_square_norm = square_norm_buffer.Alloc<float>(2 * param_num);
    auto *trust_ratio_div_square_norm = param_square_norm + param_num;

    auto *fused_offsets_t = ctx.Input<framework::Tensor>("FusedParamOffsets");
    auto *fused_offsets = fused_offsets_t->data<int>();
    auto *fp32_partial_fused_offsets_t =
        ctx.Input<framework::Tensor>("FP32ShardFusedParamOffsets");
    const auto *fp32_partial_fused_offsets =
        fp32_partial_fused_offsets_t->data<int>();
    auto *fp16_partial_fused_offsets_t =
        ctx.Input<framework::Tensor>("FP16ShardFusedParamOffsets");
    const auto *fp16_partial_fused_offsets =
        fp16_partial_fused_offsets_t->data<int>();

    VLOG(1) << "FusedParamOffsets: "
1273 1274
            << FlattenToString(fused_offsets, fused_offsets_t->numel(),
                               fused_offsets_t->place());
1275 1276
    VLOG(1) << "FP32ShardFusedParamOffsets: "
            << FlattenToString(fp32_partial_fused_offsets,
1277 1278
                               fp32_partial_fused_offsets_t->numel(),
                               fp32_partial_fused_offsets_t->place());
1279 1280
    VLOG(1) << "FP16ShardFusedParamOffsets: "
            << FlattenToString(fp16_partial_fused_offsets,
1281 1282
                               fp16_partial_fused_offsets_t->numel(),
                               fp16_partial_fused_offsets_t->place());
1283 1284 1285 1286 1287 1288 1289 1290 1291

    if (num_devices > 1) {
      if (use_master_param_norm) {
        FillZeroWithPtr(param_square_norm + fp32_global_param_num,
                        2 * param_num - fp32_global_param_num, stream);
      } else {
        FillZeroWithPtr(trust_ratio_div_square_norm, param_num, stream);
      }
    }
1292 1293
    MultiTensorL2Norm(place, stream, fp32_param, fused_offsets,
                      fp32_global_param_num, param_square_norm);
1294
    if (use_master_param_norm) {
1295 1296 1297
      MultiTensorL2Norm(place, stream, master_param + fp16_offset,
                        fp16_partial_fused_offsets, fp16_local_param_num,
                        param_square_norm + fp16_local_start_idx);
1298 1299 1300
    } else {
      // NOTE: extra computation is performed. We can improve this performance
      // if needed in the future.
1301 1302 1303
      MultiTensorL2Norm(
          place, stream, fp16_param, fused_offsets + fp32_global_param_num,
          fp16_global_param_num, param_square_norm + fp32_global_param_num);
1304 1305
    }

1306 1307 1308 1309 1310 1311
    MultiTensorL2Norm(place, stream, trust_ratio_div,
                      fp32_partial_fused_offsets, fp32_local_param_num,
                      trust_ratio_div_square_norm + fp32_local_start_idx);
    MultiTensorL2Norm(place, stream, trust_ratio_div + fp32_numel_each_device,
                      fp16_partial_fused_offsets, fp16_local_param_num,
                      trust_ratio_div_square_norm + fp16_local_start_idx);
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381

    VLOG(1) << "TrustRatioDiv L2-Norm before allreduce: "
            << FlattenToString(trust_ratio_div_square_norm, param_num, place);
    if (num_devices > 1) {
      if (use_master_param_norm) {
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclAllReduce(
            param_square_norm + fp32_global_param_num,
            param_square_norm + fp32_global_param_num,
            2 * param_num - fp32_global_param_num, ncclFloat32, ncclSum, comm,
            stream));
      } else {
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclAllReduce(
            trust_ratio_div_square_norm, trust_ratio_div_square_norm, param_num,
            ncclFloat32, ncclSum, comm, stream));
      }
      VLOG(10) << "ncclAllReduce done";
    }

    LogParamAndTrustRatioDivSquareNorm<1>(ctx, param_square_norm,
                                          trust_ratio_div_square_norm);
    VLOG(10) << "Calculate L2-Norm of Param and TrustRatioDiv done";

    // Step 9: update parameter, beta1pow, beta2pow. All gather parameters.
    if (has_fp32_param) {
      LambUpdateParamAndBetaPows<float>(
          dev_ctx, trust_ratio_div, lr, indices + fp32_offset,
          param_square_norm, trust_ratio_div_square_norm, fp32_square_grad_norm,
          &beta1pow, &beta2pow, &found_inf, beta1, beta2,
          fp32_numel_each_device, fp32_param + fp32_offset, nullptr, stream);
      if (num_devices > 1) {
        // ncclAllGather
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclAllGather(
            fp32_param + fp32_offset, fp32_param, fp32_numel_each_device,
            ncclFloat32, comm, stream));
      }
    }
    if (has_fp16_param) {
      LambUpdateParamAndBetaPows<platform::float16>(
          dev_ctx, trust_ratio_div + fp32_numel_each_device, lr,
          indices + fp32_numel + fp16_offset, param_square_norm,
          trust_ratio_div_square_norm, fp32_square_grad_norm, &beta1pow,
          &beta2pow, &found_inf, beta1, beta2, fp16_numel_each_device,
          fp16_param + fp16_offset, master_param + fp16_offset, stream);

      if (num_devices > 1) {
        // ncclAllGather
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclAllGather(
            fp16_param + fp16_offset, fp16_param, fp16_numel_each_device,
            ncclFloat16, comm, stream));
      }
    }
    VLOG(10) << "Update Param done";

    VLOG(1) << "IsFinite: " << IsFinite(dev_ctx, fp32_square_grad_norm);
#else
    PADDLE_THROW(platform::errors::Unimplemented(
        "distributed_fused_lamb op should be used with NCCL/RCCL."));
#endif
  }
};

}  // namespace operators
}  // namespace paddle

namespace plat = paddle::platform;
namespace ops = paddle::operators;

REGISTER_OP_CUDA_KERNEL(
    distributed_fused_lamb,
    ops::DistributedFusedLambOpKernel<plat::CUDADeviceContext, float>);