lstm_kernel.h 7.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
D
dangqingqing 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16
#pragma once
#include <type_traits>
Y
Yi Wang 已提交
17 18
#include "paddle/fluid/operators/math/detail/activation_functions.h"
#include "paddle/fluid/platform/hostdevice.h"
D
dangqingqing 已提交
19 20 21 22 23 24 25 26 27 28 29

namespace paddle {
namespace operators {
namespace math {
namespace detail {

namespace forward {

template <class T>
class lstm {
 public:
30 31
  HOSTDEVICE void operator()(T *value_in, T *value_ig, T *value_fg, T *value_og,
                             T *prev_state, T *state, T *state_atv, T *output,
32
                             T *checkI, T *checkF, T *checkO, T *cell_clip,
33 34 35
                             ActivationType active_node,
                             ActivationType active_gate,
                             ActivationType active_state) {
36 37 38 39
    *value_in = activation(*value_in, active_node);
    *value_ig = activation(*value_ig + (*prev_state) * (*checkI), active_gate);
    *value_fg = activation(*value_fg + (*prev_state) * (*checkF), active_gate);
    *state = (*value_in) * (*value_ig) + (*prev_state) * (*value_fg);
40 41 42 43 44 45 46 47
    if (*cell_clip > 0.0) {
      if (*state < -1.0 * (*cell_clip)) {
        *state = -1.0 * (*cell_clip);
      }
      if (*state > *cell_clip) {
        *state = *cell_clip;
      }
    }
48 49 50
    *value_og = activation(*value_og + (*state) * (*checkO), active_gate);
    *state_atv = activation(*state, active_state);
    *output = (*value_og) * (*state_atv);
D
dangqingqing 已提交
51 52
  }
#ifndef __NVCC__
Y
Yu Yang 已提交
53
#ifndef __AVX__  // If not compiled with AVX instructs. Disable AVX by default
D
dangqingqing 已提交
54 55
  static const bool avx = false;
#else
Y
Yu Yang 已提交
56 57 58
  // Only float support AVX optimization
  static const bool avx = std::is_same<T, float>::value;

59 60 61 62
  HOSTDEVICE void operator()(__m256 *value_in, __m256 *value_ig,
                             __m256 *value_fg, __m256 *value_og,
                             __m256 *prev_state, __m256 *state,
                             __m256 *state_atv, __m256 *output, __m256 *checkI,
63
                             __m256 *checkF, __m256 *checkO, T *cell_clip,
64 65 66
                             ActivationType active_node,
                             ActivationType active_gate,
                             ActivationType active_state) {
67 68 69 70 71 72 73 74 75
    *value_in = activation(*value_in, active_node);
    *value_ig = activation(
        _mm256_add_ps(*value_ig, _mm256_mul_ps(*prev_state, *checkI)),
        active_gate);
    *value_fg = activation(
        _mm256_add_ps(*value_fg, _mm256_mul_ps(*prev_state, *checkF)),
        active_gate);
    *state = _mm256_add_ps(_mm256_mul_ps(*value_in, *value_ig),
                           _mm256_mul_ps(*prev_state, *value_fg));
76 77 78 79 80 81
    if (*cell_clip > 0.0f) {
      __m256 min = _mm256_set1_ps(0.0f - *cell_clip);
      __m256 max = _mm256_set1_ps(*cell_clip);
      *state = _mm256_min_ps(max, *state);
      *state = _mm256_max_ps(min, *state);
    }
82 83 84 85
    *value_og = activation(
        _mm256_add_ps(*value_og, _mm256_mul_ps(*state, *checkO)), active_gate);
    *state_atv = activation(*state, active_state);
    *output = _mm256_mul_ps(*value_og, *state_atv);
D
dangqingqing 已提交
86 87 88 89 90 91 92 93 94 95 96 97
  }
#endif
#endif
};

}  // namespace forward

namespace backward {

template <class T>
class lstm {
 public:
98 99 100 101 102
  HOSTDEVICE void operator()(T *value_in, T *value_ig, T *value_fg, T *value_og,
                             T *grad_in, T *grad_ig, T *grad_fg, T *grad_og,
                             T *prev_state, T *prev_state_grad, T *state,
                             T *state_grad, T *state_atv, T *output_grad,
                             T *checkI, T *checkF, T *checkO, T *checkIGrad,
103
                             T *checkFGrad, T *checkOGrad, T *cell_clip,
104 105 106
                             ActivationType active_node,
                             ActivationType active_gate,
                             ActivationType active_state) {
107 108
    *grad_og =
        activation((*output_grad) * (*state_atv), *value_og, active_gate);
109 110 111 112 113 114 115 116 117
    if (*cell_clip > 0.0f) {
      if (*state >= (*cell_clip) || *state <= (0.0f - (*cell_clip))) {
        *state_grad = 0.0f;
      } else {
        *state_grad +=
            activation((*output_grad) * (*value_og), *state_atv, active_state) +
            (*grad_og) * (*checkO);
      }
    }
118 119 120 121 122 123 124 125 126
    *grad_in = activation((*state_grad) * (*value_ig), *value_in, active_node);
    *grad_ig = activation((*state_grad) * (*value_in), *value_ig, active_gate);
    *grad_fg =
        activation((*state_grad) * (*prev_state), *value_fg, active_gate);
    *prev_state_grad = (*grad_ig) * (*checkI) + (*grad_fg) * (*checkF) +
                       (*state_grad) * (*value_fg);
    *checkIGrad = (*grad_ig) * (*prev_state);
    *checkFGrad = (*grad_fg) * (*prev_state);
    *checkOGrad = (*grad_og) * (*state);
D
dangqingqing 已提交
127 128
  }
#ifndef __NVCC__
Y
Yu Yang 已提交
129
#ifndef __AVX__  // If not compiled with AVX instructs. Disable AVX by default
D
dangqingqing 已提交
130 131
  static const bool avx = false;
#else
Y
Yu Yang 已提交
132 133
  // Only float support AVX optimization
  static const bool avx = std::is_same<T, float>::value;
134
  HOSTDEVICE void operator()(
135 136 137 138 139
      __m256 *value_in, __m256 *value_ig, __m256 *value_fg, __m256 *value_og,
      __m256 *grad_in, __m256 *grad_ig, __m256 *grad_fg, __m256 *grad_og,
      __m256 *prev_state, __m256 *prev_state_grad, __m256 *state,
      __m256 *state_grad, __m256 *state_atv, __m256 *output_grad,
      __m256 *checkI, __m256 *checkF, __m256 *checkO, __m256 *checkIGrad,
140 141 142
      __m256 *checkFGrad, __m256 *checkOGrad, T *cell_clip,
      ActivationType active_node, ActivationType active_gate,
      ActivationType active_state) {
143 144
    *grad_og = activation(_mm256_mul_ps(*output_grad, *state_atv), *value_og,
                          active_gate);
145 146 147 148 149 150 151 152 153 154 155 156 157
    if (*cell_clip > 0.0f) {
      T *state_ = reinterpret_cast<T *>(state);
      if (*state_ >= (*cell_clip) || *state_ <= (0.0f - (*cell_clip))) {
        *state_grad = _mm256_set1_ps(0.0f);
      } else {
        *state_grad =
            _mm256_add_ps(activation(_mm256_mul_ps(*output_grad, *value_og),
                                     *state_atv, active_state),
                          *state_grad);
        *state_grad =
            _mm256_add_ps(_mm256_mul_ps(*grad_og, *checkO), *state_grad);
      }
    }
158 159 160 161 162 163 164 165 166 167 168 169 170
    *grad_in = activation(_mm256_mul_ps(*state_grad, *value_ig), *value_in,
                          active_node);
    *grad_ig = activation(_mm256_mul_ps(*state_grad, *value_in), *value_ig,
                          active_gate);
    *grad_fg = activation(_mm256_mul_ps(*state_grad, *prev_state), *value_fg,
                          active_gate);
    *prev_state_grad = _mm256_add_ps(_mm256_mul_ps(*grad_ig, *checkI),
                                     _mm256_mul_ps(*grad_fg, *checkF));
    *prev_state_grad =
        _mm256_add_ps(_mm256_mul_ps(*state_grad, *value_fg), *prev_state_grad);
    *checkIGrad = _mm256_mul_ps(*grad_ig, *prev_state);
    *checkFGrad = _mm256_mul_ps(*grad_fg, *prev_state);
    *checkOGrad = _mm256_mul_ps(*grad_og, *state);
D
dangqingqing 已提交
171 172 173 174 175 176 177 178 179 180 181
  }
#endif
#endif
};

}  // namespace backward

}  // namespace detail
}  // namespace math
}  // namespace operators
}  // namespace paddle