test_recurrent_op.py 13.9 KB
Newer Older
Y
Yan Chunwei 已提交
1
import unittest
S
superjom 已提交
2

Q
Qiao Longfei 已提交
3 4 5 6
import paddle.v2.fluid.layers as layers
from paddle.v2.fluid.framework import Program
from paddle.v2.fluid.executor import Executor
from paddle.v2.fluid.backward import append_backward_ops
Y
Yu Yang 已提交
7
import numpy as np
Q
Qiao Longfei 已提交
8
import paddle.v2.fluid.core as core
S
fix res  
superjom 已提交
9 10


Y
Yu Yang 已提交
11 12 13 14
class PyRNNBase(object):
    def __init__(self, input_shape, output_shape):
        self.x = np.ones(shape=input_shape).astype("float32")
        self.y = np.zeros(shape=output_shape).astype("float32")
S
superjom 已提交
15

16 17
    def step(self, step_id, x):
        raise NotImplementedError
S
superjom 已提交
18 19 20

    def forward(self):
        for step_id in range(self.x.shape[0]):
Y
Yu Yang 已提交
21 22
            self.step(step_id, self.x[step_id])
        return np.array([np.mean(self.y)])
S
superjom 已提交
23 24 25 26

    def segment_inputs(self):
        return [self.x[i] for i in range(self.x.shape[0])]

Y
Yu Yang 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

class PySimpleRNN1(PyRNNBase):
    def __init__(self, input_shape, output_shape):
        super(PySimpleRNN1, self).__init__(input_shape, output_shape)

        seq_len, batch_size, input_dim = input_shape
        self.h_boot = np.random.normal(size=(batch_size,
                                             input_dim)).astype("float32")

        self.scale = 1.0 / 2.0
        men_dim = (seq_len, batch_size, input_dim)
        self.mems = np.zeros(shape=men_dim).astype("float32")

    def step(self, step_id, x):
        if step_id == 0:
            pre_mem = self.h_boot
        else:
            pre_mem = self.mems[step_id - 1]
        self.mems[step_id] = (pre_mem + x) * self.scale
        self.y[step_id] = self.mems[step_id]


class PySimpleRNN2(PyRNNBase):
    def __init__(self, input_shape, output_shape):
        super(PySimpleRNN2, self).__init__(input_shape, output_shape)

        seq_len, batch_size, input_dim = input_shape
        self.W = np.random.normal(size=(input_dim, input_dim)).astype("float32")
        self.U = np.random.normal(size=(input_dim, input_dim)).astype("float32")
        self.h_boot = np.ones(shape=(batch_size, input_dim)).astype("float32")

        men_dim = (seq_len, batch_size, input_dim)
        self.mems = np.zeros(shape=men_dim).astype("float32")
S
superjom 已提交
60 61 62

    def step(self, step_id, x):
        if step_id > 0:
S
fix res  
superjom 已提交
63
            pre_mem = self.mems[step_id - 1]
S
superjom 已提交
64 65
        else:
            pre_mem = self.h_boot
Q
qiaolongfei 已提交
66 67
        xW = np.matmul(x, self.W).astype("float32")
        hU = np.matmul(pre_mem, self.U).astype("float32")
S
superjom 已提交
68

Y
Yu Yang 已提交
69 70
        def py_sigmoid(x):
            return 1. / (1. + np.exp(-x))
S
fix res  
superjom 已提交
71

Y
Yu Yang 已提交
72 73
        self.mems[step_id] = py_sigmoid(xW + hU)
        self.y[step_id] = self.mems[step_id]
Y
Yan Chunwei 已提交
74 75


Y
Yu Yang 已提交
76 77 78
def create_tensor(np_data, place):
    tensor = core.LoDTensor()
    tensor.set(np_data, place)
Y
Yan Chunwei 已提交
79 80 81
    return tensor


Y
Yu Yang 已提交
82
class RecurrentOpTest1(unittest.TestCase):
Y
Yan Chunwei 已提交
83 84 85
    '''
    Test RNNOp
    equation:
Y
Yu Yang 已提交
86
        h_t = ( x_t + h_{t-1} ) / scale
Y
Yan Chunwei 已提交
87 88 89 90 91
    vars:
        - x
    memories:
        - h
    outputs:
Y
Yu Yang 已提交
92
        - h
Y
Yan Chunwei 已提交
93 94
    '''

Y
Yu Yang 已提交
95 96 97 98
    input_dim = 2
    batch_size = 1
    sent_len = 1

99 100 101
    def setup_program(self):
        self.main_program = Program()
        self.startup_program = Program()
Y
Yu Yang 已提交
102
        self.p_info = {
103 104
            "main_program": self.main_program,
            "startup_program": self.startup_program
Y
Yu Yang 已提交
105 106
        }
        self.place = core.CPUPlace()
Y
Yan Chunwei 已提交
107

S
superjom 已提交
108
    def setUp(self):
109
        self.setup_program()
Y
Yu Yang 已提交
110
        self.data_field = {"x", "h_boot"}
Y
Yan Chunwei 已提交
111

Y
Yu Yang 已提交
112 113 114 115
        self.input_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.output_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.py_rnn = PySimpleRNN1(self.input_shape, self.output_shape)

116
        self.output = layers.mean(x=self.create_rnn_op(), **self.p_info)
Y
Yan Chunwei 已提交
117 118

    def create_rnn_op(self):
119
        x = layers.data(
Y
Yu Yang 已提交
120 121 122 123 124
            shape=[self.sent_len, self.batch_size, self.input_dim],
            data_type='float32',
            name='x',
            append_batch_size=False,
            **self.p_info)
Y
Yu Yang 已提交
125
        x.stop_gradient = False
126
        h_boot = layers.data(
Y
Yu Yang 已提交
127 128 129 130
            shape=[self.input_dim],
            data_type='float32',
            name='h_boot',
            **self.p_info)
Y
Yu Yang 已提交
131
        h_boot.stop_gradient = False
Y
Yu Yang 已提交
132

133
        rnn = layers.StaticRNN(main_program=self.main_program)
Y
Yu Yang 已提交
134 135 136 137
        with rnn.step():
            h_pre = rnn.memory(init=h_boot)
            x_t = rnn.step_input(x)

138 139
            h = layers.scale(
                x=layers.elementwise_add(
Y
Yu Yang 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
                    x=h_pre, y=x_t, **self.p_info),
                scale=self.py_rnn.scale,
                **self.p_info)

            rnn.update_memory(h_pre, h)
            rnn.output(h)

        return rnn()

    def forward(self):
        self.feed_map = {
            x: create_tensor(getattr(self.py_rnn, x), self.place)
            for x in self.data_field
        }
        exe = Executor(self.place)
155
        out = exe.run(self.main_program,
Y
Yu Yang 已提交
156 157 158 159 160 161 162 163 164 165 166
                      feed=self.feed_map,
                      fetch_list=[self.output])

        return np.array(out[0])

    def backward(self):
        self.feed_map = {
            x: create_tensor(getattr(self.py_rnn, x), self.place)
            for x in self.data_field
        }
        fetch_list = [
167
            self.main_program.global_block().var(x + "@GRAD")
Y
Yu Yang 已提交
168 169 170 171
            for x in self.data_field
        ]

        exe = Executor(self.place)
172 173 174
        return exe.run(self.main_program,
                       feed=self.feed_map,
                       fetch_list=fetch_list)
Y
Yu Yang 已提交
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190

    def test_backward(self):
        self.check_forward()

        append_backward_ops(self.output)

        ana_grad = [np.array(x) for x in self.backward()]

        num_grad = self.get_numerical_gradient()
        for idx, name in enumerate(self.data_field):
            self.assertEqual(num_grad[idx].shape, ana_grad[idx].shape)
            self.assertTrue(
                np.isclose(
                    num_grad[idx], ana_grad[idx], rtol=0.1).all())

    def check_forward(self):
S
superjom 已提交
191
        print 'test recurrent op forward'
S
superjom 已提交
192 193 194 195 196 197
        pd_output = self.forward()
        py_output = self.py_rnn.forward()
        print 'pd_output', pd_output
        print
        print 'py_output', py_output
        self.assertEqual(pd_output.shape, py_output.shape)
S
superjom 已提交
198
        self.assertTrue(np.isclose(pd_output, py_output, rtol=0.1).all())
Y
Yan Chunwei 已提交
199

Y
Yu Yang 已提交
200 201 202 203 204 205 206 207 208
    def get_numerical_gradient(self, delta=0.005):
        dloss_dout = 1.0
        feed_list = [getattr(self.py_rnn, x) for x in self.data_field]
        grad_list = [np.zeros_like(x) for x in feed_list]
        for feed, grad in zip(feed_list, grad_list):
            for f, g in np.nditer([feed, grad], op_flags=['readwrite']):
                o = float(f)
                f[...] = o + delta
                y_pos = self.forward()
S
fix res  
superjom 已提交
209

Y
Yu Yang 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
                f[...] = o - delta
                y_neg = self.forward()

                f[...] = o
                dout_dfeed = (y_pos - y_neg) / (delta * 2)
                g[...] = dout_dfeed[0]

        return grad_list


class RecurrentOpTest2(RecurrentOpTest1):
    '''
    Test RNNOp
    equation:
        h_t = \sigma (W x_t + U h_{t-1})
    weights:
        - W
        - U
    vars:
        - x
    memories:
        - h
    outputs:
       - h
    '''

    input_dim = 2
    batch_size = 10
    sent_len = 2

    def setUp(self):
241
        self.setup_program()
Y
Yu Yang 已提交
242 243 244 245 246 247 248

        self.data_field = {"x", "h_boot", "W", "U"}

        self.input_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.output_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.py_rnn = PySimpleRNN2(self.input_shape, self.output_shape)

249
        self.output = layers.mean(x=self.create_rnn_op(), **self.p_info)
Y
Yu Yang 已提交
250 251

    def create_rnn_op(self):
252
        x = layers.data(
Y
Yu Yang 已提交
253 254 255 256 257
            shape=[self.sent_len, self.batch_size, self.input_dim],
            data_type='float32',
            name='x',
            append_batch_size=False,
            **self.p_info)
Y
Yu Yang 已提交
258
        x.stop_gradient = False
259
        h_boot = layers.data(
Y
Yu Yang 已提交
260 261 262 263
            shape=[self.input_dim],
            data_type='float32',
            name='h_boot',
            **self.p_info)
Y
Yu Yang 已提交
264
        h_boot.stop_gradient = False
Y
Yu Yang 已提交
265

266
        rnn = layers.StaticRNN(main_program=self.main_program)
Y
Yu Yang 已提交
267 268 269 270
        with rnn.step():
            h_pre = rnn.memory(init=h_boot)
            x_t = rnn.step_input(x)

271 272 273 274 275 276 277 278 279 280 281 282 283
            temp_l = layers.fc(input=x_t,
                               size=self.input_dim,
                               param_attr={'name': 'W'},
                               bias_attr=False,
                               **self.p_info)
            temp_r = layers.fc(input=h_pre,
                               size=self.input_dim,
                               param_attr={'name': 'U'},
                               bias_attr=False,
                               **self.p_info)

            h = layers.sigmoid(
                x=layers.elementwise_add(
Y
Yu Yang 已提交
284 285 286 287 288 289 290 291 292
                    x=temp_l, y=temp_r, **self.p_info),
                **self.p_info)

            rnn.update_memory(h_pre, h)
            rnn.output(h)

        return rnn()


293
class RecurrentOpMultipleMemoryTest(RecurrentOpTest1):
Y
Yu Yang 已提交
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
    '''
    Test RNNOp with two memories
    equation:
        h_1 = h_pre_1
        h_2 = h_pre_2
        y = h_1 + h_2
    vars:
        - x
    memories:
        - h_1, h_2
    outputs:
       - y
    '''

    class PySimpleRNN3(PyRNNBase):
        def __init__(self, input_shape, output_shape):
310 311
            super(RecurrentOpMultipleMemoryTest.PySimpleRNN3, self).__init__(
                input_shape, output_shape)
Y
Yu Yang 已提交
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338

            seq_len, batch_size, input_dim = input_shape
            self.h_boot1 = np.random.normal(size=(batch_size,
                                                  input_dim)).astype("float32")
            self.h_boot2 = np.random.normal(size=(batch_size,
                                                  input_dim)).astype("float32")

            men_dim = (seq_len, batch_size, input_dim)
            self.mems1 = np.zeros(shape=men_dim).astype("float32")
            self.mems2 = np.zeros(shape=men_dim).astype("float32")

        def step(self, step_id, x):
            if step_id == 0:
                pre_mem1 = self.h_boot1
                pre_mem2 = self.h_boot2
            else:
                pre_mem1 = self.mems1[step_id - 1]
                pre_mem2 = self.mems2[step_id - 1]
            self.mems1[step_id] = pre_mem1
            self.mems2[step_id] = pre_mem2
            self.y[step_id] = self.mems1[step_id] + self.mems2[step_id] + x

    input_dim = 1
    batch_size = 1
    sent_len = 2

    def setUp(self):
339
        self.setup_program()
Y
Yu Yang 已提交
340 341 342 343 344

        self.data_field = {"x", "h_boot1", "h_boot2"}

        self.input_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.output_shape = (self.sent_len, self.batch_size, self.input_dim)
345 346
        self.py_rnn = RecurrentOpMultipleMemoryTest.PySimpleRNN3(
            self.input_shape, self.output_shape)
Y
Yu Yang 已提交
347

348
        self.output = layers.mean(x=self.create_rnn_op(), **self.p_info)
Y
Yu Yang 已提交
349 350

    def create_rnn_op(self):
351
        x = layers.data(
Y
Yu Yang 已提交
352 353 354 355 356
            shape=[self.sent_len, self.batch_size, self.input_dim],
            data_type='float32',
            name='x',
            append_batch_size=False,
            **self.p_info)
Y
Yu Yang 已提交
357
        x.stop_gradient = False
358
        h_boot1 = layers.data(
Y
Yu Yang 已提交
359 360 361 362 363
            shape=[self.batch_size, self.input_dim],
            data_type='float32',
            name='h_boot1',
            append_batch_size=False,
            **self.p_info)
Y
Yu Yang 已提交
364
        h_boot1.stop_gradient = False
365
        h_boot2 = layers.data(
Y
Yu Yang 已提交
366 367 368 369 370
            shape=[self.batch_size, self.input_dim],
            data_type='float32',
            name='h_boot2',
            append_batch_size=False,
            **self.p_info)
Y
Yu Yang 已提交
371
        h_boot2.stop_gradient = False
Y
Yu Yang 已提交
372

373
        rnn = layers.StaticRNN(main_program=self.main_program)
Y
Yu Yang 已提交
374 375 376 377 378
        with rnn.step():
            h_pre1 = rnn.memory(init=h_boot1)
            h_pre2 = rnn.memory(init=h_boot2)
            x_t = rnn.step_input(x)

379 380 381
            mem1 = layers.scale(x=h_pre1, scale=1.0, **self.p_info)
            mem2 = layers.scale(x=h_pre2, scale=1.0, **self.p_info)
            out = layers.sums(input=[mem1, x_t, mem2], **self.p_info)
Y
Yu Yang 已提交
382 383 384 385 386 387

            rnn.update_memory(h_pre1, mem1)
            rnn.update_memory(h_pre2, mem2)
            rnn.output(out)

        return rnn()
S
init  
superjom 已提交
388 389


390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
class RecurrentOpNoMemBootTest(RecurrentOpTest1):
    '''
    Test RNNOp with two memories
    equation:
        mem = x + mem_pre
        y = mem
    vars:
        - x
    memories:
        - mem
    outputs:
       - y
    '''

    class PySimpleRNN4(PyRNNBase):
        def __init__(self, input_shape, output_shape):
            super(RecurrentOpNoMemBootTest.PySimpleRNN4, self).__init__(
                input_shape, output_shape)
            men_dim = input_shape
            self.mems = np.zeros(shape=men_dim).astype("float32")

        def step(self, step_id, x):
            if step_id == 0:
                pre_mem = np.zeros_like(x)
            else:
                pre_mem = self.mems[step_id - 1]
            self.mems[step_id] = pre_mem + x
            self.y[step_id] = self.mems[step_id]

    input_dim = 1
    batch_size = 1
    sent_len = 2

    def setUp(self):
        self.setup_program()

        self.data_field = {"x"}

        self.input_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.output_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.py_rnn = RecurrentOpNoMemBootTest.PySimpleRNN4(self.input_shape,
                                                            self.output_shape)
        self.output = layers.mean(x=self.create_rnn_op(), **self.p_info)
        print self.main_program

    def create_rnn_op(self):
        x = layers.data(
            shape=[self.sent_len, self.batch_size, self.input_dim],
            data_type='float32',
            name='x',
            append_batch_size=False,
            **self.p_info)
        x.stop_gradient = False

        rnn = layers.StaticRNN(main_program=self.main_program)
        with rnn.step():
            mem_pre = rnn.memory(shape=[-1, self.input_dim], batch_ref=x)
            x_t = rnn.step_input(x)
            mem = layers.elementwise_add(x=mem_pre, y=x_t, **self.p_info)
            rnn.update_memory(mem_pre, mem)
            rnn.output(mem)

        return rnn()


Y
Yan Chunwei 已提交
455 456
if __name__ == '__main__':
    unittest.main()