test_fused_attention_op.py 13.4 KB
Newer Older
L
Li Min 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np

import paddle
import paddle.nn as nn
import paddle.fluid.core as core
import paddle.nn.functional as F
21
import paddle.incubate.nn.functional as incubate_f
L
Li Min 已提交
22 23 24 25 26 27 28
from paddle.nn.layer.norm import LayerNorm
from paddle.nn.layer.common import Linear, Dropout
from paddle.nn.layer.transformer import _convert_attention_mask
from paddle import tensor
from paddle.fluid import layers
import unittest
from op_test import OpTest
29 30 31
from paddle.fluid.framework import default_main_program

default_main_program().random_seed = 42
L
Li Min 已提交
32 33 34 35 36 37 38 39


class TestFusedAttentionOp(OpTest):
    def setUp(self):
        self.config()
        self.generate_input_data()
        paddle.set_default_dtype(self.x_type)
        self.__class__.op_type = "fused_attention"
40 41
        # use autograd to check grad in this unittest.
        self.__class__.no_need_check_grad = True
L
Li Min 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
        self.q_proj = Linear(
            self.embed_dim,
            self.embed_dim,
            self.weight_attr,
            bias_attr=self.bias_attr)
        self.k_proj = Linear(
            self.kdim,
            self.embed_dim,
            self.weight_attr,
            bias_attr=self.bias_attr)
        self.v_proj = Linear(
            self.vdim,
            self.embed_dim,
            self.weight_attr,
            bias_attr=self.bias_attr)
        self.out_proj = Linear(
            self.embed_dim,
            self.embed_dim,
            self.weight_attr,
            bias_attr=self.bias_attr)
        paddle.set_default_dtype(np.float32)
        self.norm1 = LayerNorm(self.embed_dim)
        self.norm2 = LayerNorm(self.embed_dim)
        paddle.set_default_dtype(self.x_type)
        self.dropout = Dropout(self.dropout_prob, mode="upscale_in_train")

    def config(self):
        self.x_type = np.float32
        self.attn_mask_type = np.float64
71
        self.pre_layer_norm = False
72
        self.has_attn_mask = True
L
Li Min 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
        self.training = True

        self.batch_size = 8
        self.query_length = 128
        self.head_dim = 64
        self.num_heads = 16
        self.embed_dim = self.head_dim * self.num_heads

        self.dropout_prob = 0.0
        self.attn_dropout_prob = 0.0
        self.weight_attr = None
        self.bias_attr = None
        self.kdim, self.vdim = self.embed_dim, self.embed_dim
        self.key_length, self.value_length = self.query_length, self.query_length

    def generate_input_data(self):
        self.query = np.random.rand(self.batch_size, self.query_length,
                                    self.embed_dim).astype(self.x_type)
91 92 93 94 95 96 97 98 99 100 101 102
        if self.has_attn_mask:
            self.attn_mask = np.ones(
                (self.batch_size, self.num_heads, self.query_length,
                 self.key_length),
                dtype=self.attn_mask_type)
            if self.attn_mask_type == np.int64:
                self.attn_mask = np.tril(self.attn_mask)
            elif self.attn_mask_type == np.float64:
                self.attn_mask = (np.tril(self.attn_mask) - 1.0) * 1e9
            else:
                raise ValueError(
                    "'attn_mask_type' should be 'int64' or 'float64'.")
L
Li Min 已提交
103
        else:
104
            self.attn_mask = None
L
Li Min 已提交
105 106 107 108 109 110 111 112
        self.key, self.value = self.query, self.query

        self.dout = np.random.random((self.batch_size, self.query_length,
                                      self.embed_dim)).astype(self.x_type)

    def GetBaselineOut(self):
        paddle.disable_static(place=paddle.CUDAPlace(0))
        tensor_query = paddle.to_tensor(self.query, stop_gradient=False)
113 114 115 116
        if self.has_attn_mask:
            attn_mask = paddle.to_tensor(self.attn_mask, stop_gradient=False)
        else:
            attn_mask = None
L
Li Min 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
        residual = tensor_query

        ln1_out = tensor_query
        if self.pre_layer_norm:
            ln1_out = self.norm1(tensor_query)

        q = self.q_proj(ln1_out)
        q = tensor.reshape(x=q, shape=[0, 0, self.num_heads, self.head_dim])
        q_out = tensor.transpose(x=q, perm=[0, 2, 1, 3])
        k = self.k_proj(ln1_out)
        v = self.v_proj(ln1_out)
        k = tensor.reshape(x=k, shape=[0, 0, self.num_heads, self.head_dim])
        k_out = tensor.transpose(x=k, perm=[0, 2, 1, 3])
        v = tensor.reshape(x=v, shape=[0, 0, self.num_heads, self.head_dim])
        v_out = tensor.transpose(x=v, perm=[0, 2, 1, 3])

        qk_out = layers.matmul(
            x=q_out, y=k_out, transpose_y=True, alpha=self.head_dim**-0.5)

        if attn_mask is not None:
            attn_mask = _convert_attention_mask(attn_mask, qk_out.dtype)
            attn_mask_out = qk_out + attn_mask
            softmax_out = F.softmax(attn_mask_out)
        else:
            softmax_out = F.softmax(qk_out)

        if self.dropout_prob:
            dropout_out = F.dropout(
                softmax_out,
                self.dropout_prob,
                training=self.training,
                mode="upscale_in_train")
            qktv_out = tensor.matmul(dropout_out, v_out)
        else:
            qktv_out = tensor.matmul(softmax_out, v_out)

        fmha_out = tensor.transpose(qktv_out, perm=[0, 2, 1, 3])
        out_linear_in = tensor.reshape(
            x=fmha_out, shape=[0, 0, fmha_out.shape[2] * fmha_out.shape[3]])
        out = self.out_proj(out_linear_in)

        residual_out = residual + self.dropout(out)
        if not self.pre_layer_norm:
            final_out = self.norm1(residual_out)
L
Li Min 已提交
161 162
        else:
            final_out = residual_out
163 164 165
        paddle.autograd.backward(
            [final_out], [paddle.to_tensor(self.dout)], retain_graph=True)
        return final_out, tensor_query.grad
L
Li Min 已提交
166 167 168 169 170 171 172 173 174 175 176

    def GetFusedAttentionOut(self):
        paddle.disable_static(place=paddle.CUDAPlace(0))
        q_proj_weight = paddle.to_tensor(
            self.q_proj.weight, stop_gradient=False)
        k_proj_weight = paddle.to_tensor(
            self.k_proj.weight, stop_gradient=False)
        v_proj_weight = paddle.to_tensor(
            self.v_proj.weight, stop_gradient=False)
        out_linear_weight = paddle.to_tensor(
            self.out_proj.weight, stop_gradient=False)
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193

        if self.bias_attr is False:
            qkv_bias_tensor = None
            out_linear_bias = None
        else:
            q_proj_bias = paddle.to_tensor(
                self.q_proj.bias, stop_gradient=False)
            k_proj_bias = paddle.to_tensor(
                self.k_proj.bias, stop_gradient=False)
            v_proj_bias = paddle.to_tensor(
                self.v_proj.bias, stop_gradient=False)
            qkv_bias = np.concatenate(
                (q_proj_bias.numpy(), k_proj_bias.numpy(), v_proj_bias.numpy()))
            qkv_bias = qkv_bias.reshape((3, self.num_heads, self.head_dim))
            qkv_bias_tensor = paddle.to_tensor(qkv_bias, stop_gradient=False)
            out_linear_bias = paddle.to_tensor(
                self.out_proj.bias, stop_gradient=False)
L
Li Min 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208

        ln1_scale = paddle.to_tensor(self.norm1.weight, stop_gradient=False)
        ln1_bias = paddle.to_tensor(self.norm1.bias, stop_gradient=False)
        ln2_scale = paddle.to_tensor(self.norm2.weight, stop_gradient=False)
        ln2_bias = paddle.to_tensor(self.norm2.bias, stop_gradient=False)

        q_proj_weight = q_proj_weight.numpy().transpose((1, 0))
        k_proj_weight = k_proj_weight.numpy().transpose((1, 0))
        v_proj_weight = v_proj_weight.numpy().transpose((1, 0))
        qkv_weight = np.concatenate(
            (q_proj_weight, k_proj_weight, v_proj_weight))
        qkv_weight = qkv_weight.reshape(
            (3, self.num_heads, self.head_dim, self.embed_dim))

        x = paddle.to_tensor(self.query, stop_gradient=False)
209 210 211 212
        if self.has_attn_mask:
            attn_mask = paddle.to_tensor(self.attn_mask, stop_gradient=False)
        else:
            attn_mask = None
L
Li Min 已提交
213 214 215 216 217 218
        qkv_weight_tensor = paddle.to_tensor(qkv_weight, stop_gradient=False)
        epsilon = 1e-05
        ln2_epsilon = 1e-05

        if attn_mask is not None:
            attn_mask = _convert_attention_mask(attn_mask, x.dtype)
219
        final_out = incubate_f.fused_multi_head_attention(
L
Li Min 已提交
220 221 222 223
            x, qkv_weight_tensor, out_linear_weight, self.pre_layer_norm,
            ln1_scale, ln1_bias, ln2_scale, ln2_bias, epsilon, qkv_bias_tensor,
            out_linear_bias, attn_mask, self.dropout_prob,
            self.attn_dropout_prob, ln2_epsilon)
224 225 226
        paddle.autograd.backward(
            [final_out], [paddle.to_tensor(self.dout)], retain_graph=True)
        return final_out, x.grad
L
Li Min 已提交
227 228

    def test_fused_attention_op(self):
229 230
        final_out_ref, x_grad_ref = self.GetBaselineOut()
        final_out, x_grad = self.GetFusedAttentionOut()
L
Li Min 已提交
231
        np.testing.assert_allclose(
L
Li Min 已提交
232
            final_out_ref, final_out.numpy(), rtol=1e-5, atol=1e-4)
233
        np.testing.assert_allclose(
L
Li Min 已提交
234
            x_grad_ref, x_grad.numpy(), rtol=1e-5, atol=1e-4)
L
Li Min 已提交
235 236


237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
class TestFusedAttentionOpBiasIsNone(TestFusedAttentionOp):
    def config(self):
        self.x_type = np.float32
        self.attn_mask_type = np.float64
        self.pre_layer_norm = False
        self.has_attn_mask = True
        self.training = True

        self.batch_size = 8
        self.query_length = 128
        self.head_dim = 64
        self.num_heads = 16
        self.embed_dim = self.head_dim * self.num_heads

        self.dropout_prob = 0.0
        self.attn_dropout_prob = 0.0
        self.weight_attr = None
        self.bias_attr = False
        self.kdim, self.vdim = self.embed_dim, self.embed_dim
        self.key_length, self.value_length = self.query_length, self.query_length

    def test_fused_attention_op(self):
        final_out_ref, x_grad_ref = self.GetBaselineOut()
        final_out, x_grad = self.GetFusedAttentionOut()
        np.testing.assert_allclose(
            final_out_ref, final_out.numpy(), rtol=1e-5, atol=1e-4)
        np.testing.assert_allclose(
            x_grad_ref, x_grad.numpy(), rtol=1e-5, atol=1e-4)


267 268 269 270 271
class TestFusedAttentionOpPreLn(TestFusedAttentionOp):
    def config(self):
        self.x_type = np.float32
        self.attn_mask_type = np.float64
        self.pre_layer_norm = True
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
        self.has_attn_mask = True
        self.training = True

        self.batch_size = 8
        self.query_length = 128
        self.head_dim = 64
        self.num_heads = 16
        self.embed_dim = self.head_dim * self.num_heads

        self.dropout_prob = 0.0
        self.attn_dropout_prob = 0.0
        self.weight_attr = None
        self.bias_attr = None
        self.kdim, self.vdim = self.embed_dim, self.embed_dim
        self.key_length, self.value_length = self.query_length, self.query_length

    def test_fused_attention_op(self):
        final_out_ref, x_grad_ref = self.GetBaselineOut()
        final_out, x_grad = self.GetFusedAttentionOut()
        np.testing.assert_allclose(
L
Li Min 已提交
292
            final_out_ref, final_out.numpy(), rtol=1e-5, atol=1e-4)
293
        np.testing.assert_allclose(
L
Li Min 已提交
294
            x_grad_ref, x_grad.numpy(), rtol=1e-5, atol=1e-4)
295 296 297 298 299 300 301 302


class TestFusedAttentionOpNoneAttnMask(TestFusedAttentionOp):
    def config(self):
        self.x_type = np.float32
        self.attn_mask_type = np.float64
        self.pre_layer_norm = True
        self.has_attn_mask = False
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
        self.training = True

        self.batch_size = 8
        self.query_length = 128
        self.head_dim = 64
        self.num_heads = 16
        self.embed_dim = self.head_dim * self.num_heads

        self.dropout_prob = 0.0
        self.attn_dropout_prob = 0.0
        self.weight_attr = None
        self.bias_attr = None
        self.kdim, self.vdim = self.embed_dim, self.embed_dim
        self.key_length, self.value_length = self.query_length, self.query_length

    def test_fused_attention_op(self):
        final_out_ref, x_grad_ref = self.GetBaselineOut()
        final_out, x_grad = self.GetFusedAttentionOut()
        np.testing.assert_allclose(
L
Li Min 已提交
322
            final_out_ref, final_out.numpy(), rtol=1e-5, atol=1e-4)
323
        np.testing.assert_allclose(
L
Li Min 已提交
324
            x_grad_ref, x_grad.numpy(), rtol=1e-5, atol=1e-4)
325 326


L
Li Min 已提交
327 328 329 330
class TestFusedAttentionOpFp16(TestFusedAttentionOp):
    def config(self):
        self.x_type = np.float16
        self.attn_mask_type = np.float64
331
        self.pre_layer_norm = False
332
        self.has_attn_mask = True
L
Li Min 已提交
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
        self.training = True

        self.batch_size = 8
        self.query_length = 128
        self.head_dim = 64
        self.num_heads = 16
        self.embed_dim = self.head_dim * self.num_heads

        self.dropout_prob = 0.0
        self.attn_dropout_prob = 0.0
        self.weight_attr = None
        self.bias_attr = None
        self.kdim, self.vdim = self.embed_dim, self.embed_dim
        self.key_length, self.value_length = self.query_length, self.query_length

    def test_fused_attention_op(self):
349 350
        final_out_ref, x_grad_ref = self.GetBaselineOut()
        final_out, x_grad = self.GetFusedAttentionOut()
L
Li Min 已提交
351 352
        np.testing.assert_allclose(
            final_out_ref, final_out.numpy(), rtol=1e-5, atol=1e-1)
353 354
        np.testing.assert_allclose(
            x_grad_ref, x_grad.numpy(), rtol=1e-5, atol=1e-1)
L
Li Min 已提交
355 356 357 358


if __name__ == "__main__":
    unittest.main()