layer_function_generator.py 9.6 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
D
dzhwinter 已提交
14 15 16
import re
import cStringIO
import functools
17
import warnings
Y
yuyang18 已提交
18
import string
D
dzhwinter 已提交
19

20
from ..proto import framework_pb2
21 22
from ..framework import OpProtoHolder, Variable
from ..layer_helper import LayerHelper
D
dzhwinter 已提交
23

Y
yuyang18 已提交
24
__all__ = ['deprecated', 'generate_layer_fn', 'autodoc', 'templatedoc']
D
dzhwinter 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42


def _convert_(name):
    """
    Formatting.

    Args:
       name: The name/alias

    This function takes in a name and converts it to a standard format of
    group1_group2. Where as per the regular expression, group1 can have
    alphabets and numbers and group2 has capital alphabets.

    """
    s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', name)
    return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower()


Y
yuyang18 已提交
43 44 45 46
def _type_to_str_(tp):
    return framework_pb2.AttrType.Name(tp)


L
Luo Tao 已提交
47 48 49 50 51
_two_dollar_pattern_ = re.compile(r"\$\$([^\$]+)\$\$")
_single_dollar_pattern_ = re.compile(r"\$([^\$]+)\$")
_two_bang_pattern_ = re.compile(r"!!([^!]+)!!")


D
dzhwinter 已提交
52 53 54 55 56 57 58 59 60 61 62
def _generate_doc_string_(op_proto):
    """
    Generate docstring by OpProto

    Args:
        op_proto (framework_pb2.OpProto): a protobuf message typed OpProto

    Returns:
        str: the document string
    """

L
Luo Tao 已提交
63 64 65 66 67 68
    def escape_math(text):
        return _two_bang_pattern_.sub(
            r'$$\1$$',
            _single_dollar_pattern_.sub(
                r':math:`\1`', _two_dollar_pattern_.sub(r"!!\1!!", text)))

D
dzhwinter 已提交
69 70 71 72
    if not isinstance(op_proto, framework_pb2.OpProto):
        raise TypeError("OpProto should be `framework_pb2.OpProto`")

    buf = cStringIO.StringIO()
L
Luo Tao 已提交
73
    buf.write(escape_math(op_proto.comment))
D
dzhwinter 已提交
74 75 76 77
    buf.write('\nArgs:\n')
    for each_input in op_proto.inputs:
        line_begin = '    {0}: '.format(_convert_(each_input.name))
        buf.write(line_begin)
L
Luo Tao 已提交
78
        buf.write(escape_math(each_input.comment))
D
dzhwinter 已提交
79
        buf.write('\n')
L
Luo Tao 已提交
80 81 82 83
        if each_input.duplicable:
            buf.write("  Duplicatable.")
        if each_input.dispensable:
            buf.write("  Optional.")
D
dzhwinter 已提交
84 85
        buf.write('\n')

86 87
    skip_attrs = OpProtoHolder.generated_op_attr_names()

D
dzhwinter 已提交
88
    for each_attr in op_proto.attrs:
89 90
        if each_attr.name in skip_attrs:
            continue
D
dzhwinter 已提交
91 92 93 94 95
        buf.write('    ')
        buf.write(each_attr.name)
        buf.write(' (')
        buf.write(_type_to_str_(each_attr.type))
        buf.write('): ')
L
Luo Tao 已提交
96
        buf.write(escape_math(each_attr.comment))
D
dzhwinter 已提交
97 98 99 100 101 102 103 104
        buf.write('\n')

    if len(op_proto.outputs) != 0:
        buf.write('\nReturns:\n')
        buf.write('    ')
        for each_opt in op_proto.outputs:
            if not each_opt.intermediate:
                break
L
Luo Tao 已提交
105
        buf.write(escape_math(each_opt.comment))
D
dzhwinter 已提交
106 107 108 109

    return buf.getvalue()


110
def generate_layer_fn(op_type):
111
    """Register the Python layer for an Operator.
D
dzhwinter 已提交
112 113

    Args:
114
       op_type: The name of the operator to be created.
D
dzhwinter 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127

    This function takes in the operator type (sigmoid, mean , average etc) and
    creates the operator functionality.

    """
    op_proto = OpProtoHolder.instance().get_op_proto(op_type)
    not_intermediate_outputs = \
        filter(lambda output: not output.intermediate, op_proto.outputs)
    intermediate_outputs = \
        filter(lambda output: output.intermediate, op_proto.outputs)

    if len(not_intermediate_outputs) != 1:
        raise ValueError("Only one non intermediate output operator can be",
Y
yuyang18 已提交
128
                         "automatically generated. {0}".format(op_type))
D
dzhwinter 已提交
129 130 131

    if not_intermediate_outputs[0].duplicable:
        raise ValueError(
132
            "Only non duplicable op can be automatically generated.")
D
dzhwinter 已提交
133 134 135 136

    for output in intermediate_outputs:
        if output.duplicable:
            raise ValueError("The op can be automatically generated only when ",
137
                             "all intermediate ops are not duplicable.")
D
dzhwinter 已提交
138 139 140 141

    o_name = not_intermediate_outputs[0].name
    intermediate_output_names = [output.name for output in intermediate_outputs]

Y
Yu Yang 已提交
142
    def infer_and_check_dtype(op_proto, *args, **kwargs):
D
dzhwinter 已提交
143 144 145 146 147 148 149 150 151 152
        """
        This function performs the sanity check for dtype and
        instance type.
        """
        dtype = None
        for ipt in op_proto.inputs:
            name = _convert_(ipt.name)
            val = kwargs.pop(name, [])
            if not isinstance(val, list) and not isinstance(val, tuple):
                val = [val]
Y
Yu Yang 已提交
153 154 155 156
            if len(val) == 0:
                val = [args[0]]
                args = args[1:]

D
dzhwinter 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170
            for each in val:
                if not isinstance(each, Variable):
                    raise ValueError("input of {0} must be variable".format(
                        op_type))

                if dtype is None:
                    dtype = each.dtype
                elif dtype != each.dtype:
                    raise ValueError(
                        "operator {0} must input same dtype. {1} vs {2}".format(
                            op_type, dtype, each.dtype))

        return dtype

Y
Yu Yang 已提交
171
    def func(*args, **kwargs):
D
dzhwinter 已提交
172 173
        helper = LayerHelper(op_type, **kwargs)

Y
Yu Yang 已提交
174
        dtype = infer_and_check_dtype(op_proto, *args, **kwargs)
D
dzhwinter 已提交
175 176 177 178 179 180 181

        inputs = dict()
        for ipt in op_proto.inputs:
            name = _convert_(ipt.name)
            val = kwargs.pop(name, [])
            if not isinstance(val, list) and not isinstance(val, tuple):
                val = [val]
Y
Yu Yang 已提交
182 183 184
            if len(val) == 0 and len(args) != 0:
                val = args[0]
                args = args[1:]
D
dzhwinter 已提交
185 186 187
            inputs[ipt.name] = val

        outputs = dict()
188 189 190 191 192 193 194
        out = kwargs.pop(_convert_(o_name), [])
        if out:
            out_var = out[0] if (isinstance(out, list) or
                                 isinstance(out, tuple)) else out
        else:
            out_var = helper.create_tmp_variable(dtype=dtype)
        outputs[o_name] = [out_var]
D
dzhwinter 已提交
195 196 197 198
        for name in intermediate_output_names:
            outputs[name] = [helper.create_tmp_variable(dtype=dtype)]
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=kwargs)
199
        return helper.append_activation(out_var)
D
dzhwinter 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216

    func.__name__ = op_type
    func.__doc__ = _generate_doc_string_(op_proto)
    return func


def deprecated(func_or_class):
    """
    Deprecated warning decorator. It will result a warning message.
    Should be used before class or function, member function
    """

    @functools.wraps(func)
    def func_wrapper(*args, **kwargs):
        """
        Wrap func with deprecated warning
        """
Y
Yang Yu 已提交
217
        warnings.simplefilter('always', DeprecationWarning)  # turn off filter
D
dzhwinter 已提交
218 219 220 221
        warnings.warn(
            "Call to deprecated function {}.".format(func.__name__),
            category=DeprecationWarning,
            stacklevel=2)
Y
Yang Yu 已提交
222
        warnings.simplefilter('default', DeprecationWarning)  # reset filter
D
dzhwinter 已提交
223 224 225
        return func(*args, **kwargs)

    return func_wrapper
Y
Yang Yu 已提交
226 227


228 229 230 231 232 233 234
def autodoc(comment=""):
    def __impl__(func):
        func.__doc__ = _generate_doc_string_(OpProtoHolder.instance(
        ).get_op_proto(func.__name__)) + comment
        return func

    return __impl__
Y
yuyang18 已提交
235 236


Y
yuyang18 已提交
237 238 239
_inline_math_single_dollar = re.compile(r"\$([^\$]+)\$")


Y
yuyang18 已提交
240
def templatedoc(op_type=None):
Y
yuyang18 已提交
241 242 243 244 245 246 247 248 249 250
    """
    Decorator of layer function. It will use the docstring from the layer
    function as the template. The template arguments are:

    * ${comment}: The operator comment written in CPP.
    * ${{name}_comment}: The comment of ${name} written with AddAttr, AddOutput,
        and AddInput. The ${name} is Python snake style. i.e., xxx_xxx.
    * ${{name}_type}: The type of ${name}.

    Returns:
Y
yuyang18 已提交
251
        Decorated function.
Y
yuyang18 已提交
252 253
    """

Y
yuyang18 已提交
254 255 256
    def trim_ending_dot(msg):
        return msg.rstrip('.')

Y
yuyang18 已提交
257 258 259
    def escape_inline_math(msg):
        return _inline_math_single_dollar.sub(repl=r':math:`\1`', string=msg)

Y
yuyang18 已提交
260
    def __impl__(func):
Y
yuyang18 已提交
261 262 263 264 265
        if op_type is None:
            op_type_name = func.__name__
        else:
            op_type_name = op_type
        op_proto = OpProtoHolder.instance().get_op_proto(op_type_name)
Y
yuyang18 已提交
266
        tmpl = string.Template(func.__doc__)
Y
yuyang18 已提交
267 268 269 270

        comment_lines = op_proto.comment.split("\n")
        comment = ""
        for line in comment_lines:
Y
yuyang18 已提交
271 272
            line = line.strip()
            if len(line) != 0:
Y
yuyang18 已提交
273
                comment += escape_inline_math(line)
Y
yuyang18 已提交
274
                comment += " "
Y
yuyang18 已提交
275 276
            elif len(comment) != 0:
                comment += "\n    \n    "
Y
yuyang18 已提交
277

Y
yuyang18 已提交
278
        args = {"comment": trim_ending_dot(comment)}
Y
yuyang18 已提交
279 280
        for each_input in op_proto.inputs:
            input_name = _convert_(each_input.name)
Y
yuyang18 已提交
281 282
            args["{0}_comment".format(input_name)] = trim_ending_dot(
                each_input.comment)
Y
yuyang18 已提交
283 284 285
            args["{0}_type".format(input_name)] = "Variable"
        for each_attr in op_proto.attrs:
            input_name = _convert_(each_attr.name)
Y
yuyang18 已提交
286 287
            args["{0}_comment".format(input_name)] = trim_ending_dot(
                each_attr.comment)
Y
yuyang18 已提交
288 289 290 291
            args["{0}_type".format(input_name)] = _type_to_str_(each_attr.type)

        for each_opt in op_proto.outputs:
            output_name = _convert_(each_opt.name)
Y
yuyang18 已提交
292 293
            args["{0}_comment".format(output_name)] = trim_ending_dot(
                each_opt.comment)
Y
yuyang18 已提交
294 295 296 297 298
            args["{0}_type".format(output_name)] = "Variable"
        func.__doc__ = tmpl.substitute(args)
        return func

    return __impl__