concat_op.cc 5.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/concat_op.h"
S
Siddharth Goyal 已提交
16
#include <string>
17 18
#include <vector>

19 20 21 22
#ifdef PADDLE_WITH_MKLDNN
#include <paddle/fluid/platform/mkldnn_helper.h>
#endif

23 24 25 26 27 28 29 30
namespace paddle {
namespace operators {
using framework::Tensor;

class ConcatOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

31
  void InferShape(framework::InferShapeContext *ctx) const override {
32
    PADDLE_ENFORCE_GE(ctx->Inputs("X").size(), 1UL,
33
                      "Inputs(X) of ConcatOp should be empty.");
Q
Qiao Longfei 已提交
34 35
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of ConcatOp should not be null.");
36

Q
Qiao Longfei 已提交
37 38
    auto ins = ctx->GetInputsDim("X");
    size_t axis = static_cast<size_t>(ctx->Attrs().Get<int>("axis"));
39
    const size_t n = ins.size();
40

41 42
    PADDLE_ENFORCE_GT(n, 0, "Input tensors count should > 0.");
    if (n == 1) {
M
minqiyang 已提交
43
      VLOG(3) << "Warning: concat op have only one input, may waste memory";
44
    }
45

Q
Qiao Longfei 已提交
46
    auto out_dims = ins[0];
47 48 49 50
    size_t in_zero_dims_size = out_dims.size();
    for (size_t i = 1; i < n; i++) {
      for (size_t j = 0; j < in_zero_dims_size; j++) {
        if (j == axis) {
Q
Qiao Longfei 已提交
51
          out_dims[axis] += ins[i][j];
Q
Qiao Longfei 已提交
52 53 54 55
        } else {
          PADDLE_ENFORCE_EQ(out_dims[j], ins[i][j],
                            "Input tensors should have the same "
                            "elements except the specify axis.");
56 57 58
        }
      }
    }
Q
Qiao Longfei 已提交
59 60 61
    if (out_dims[axis] < 0) {
      out_dims[axis] = -1;
    }
Q
Qiao Longfei 已提交
62
    ctx->SetOutputDim("Out", out_dims);
Q
Qiao Longfei 已提交
63
    ctx->ShareLoD("X", /*->*/ "Out");
64
  }
M
Michal Gallus 已提交
65 66 67

 protected:
  framework::OpKernelType GetExpectedKernelType(
68 69 70 71 72 73 74 75 76
      const framework::ExecutionContext &ctx) const override {
    auto input_data_type =
        framework::GetDataTypeOfVar(ctx.MultiInputVar("X")[0]);

#ifdef PADDLE_WITH_MKLDNN
    if (platform::CanMKLDNNBeUsed(ctx)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
M
Michal Gallus 已提交
77
    }
78 79 80
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
81 82 83 84
};

class ConcatOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
85
  void Make() override {
86 87
    AddInput("X", "Input tensors of concat operator.").AsDuplicable();
    AddOutput("Out", "Output tensor of concat operator.");
88 89 90 91
    AddAttr<bool>(
        "use_mkldnn",
        "(bool, default false) Indicates if MKL-DNN kernel will be used")
        .SetDefault(false);
92 93
    AddAttr<int>("axis",
                 "The axis along which the input tensors will be concatenated.")
94
        .SetDefault(0);
95 96 97 98 99 100 101 102 103 104 105 106 107
    AddComment(R"DOC(
Concat Operator.

Concatenate the input tensors along dimension axis.
Examples:
  Input[0] = [[1,2],[3,4]]
  Input[1] = [[5,6]]
  axis = 0
  Output = [[1,2],
            [3,4],
            [5,6]]

)DOC");
108 109 110
  }
};

111 112 113 114 115 116 117 118
class ConcatOpGrad : public framework::OperatorWithKernel {
 public:
  ConcatOpGrad(const std::string &type,
               const framework::VariableNameMap &inputs,
               const framework::VariableNameMap &outputs,
               const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

119
  void InferShape(framework::InferShapeContext *ctx) const override {
C
chengduo 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133
    auto in_x = "X";
    auto out_x_g_n = framework::GradVarName(in_x);
    ctx->SetOutputsDim(out_x_g_n, ctx->GetInputsDim(in_x));
    auto &in_names = ctx->Inputs(in_x);
    auto &out_names = ctx->Outputs(out_x_g_n);
    PADDLE_ENFORCE_EQ(
        in_names.size(), out_names.size(),
        "The number of arguments in %s[%d] and %s[%d] is not equal.", in_x,
        in_names.size(), out_x_g_n, out_names.size());
    for (size_t i = 0; i < in_names.size(); ++i) {
      if (out_names[i] != framework::kEmptyVarName) {
        ctx->ShareLoD(in_x, out_x_g_n, i, i);
      }
    }
134 135 136
  }
};

137 138 139 140
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
141 142
REGISTER_OPERATOR(concat, ops::ConcatOp, ops::ConcatOpMaker,
                  paddle::framework::DefaultGradOpDescMaker<
143 144
                      false> /* set false to disable empty grad */);
REGISTER_OPERATOR(concat_grad, ops::ConcatOpGrad);
C
chengduoZH 已提交
145
REGISTER_OP_CPU_KERNEL(
146 147 148 149
    concat, ops::ConcatKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ConcatKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ConcatKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::ConcatKernel<paddle::platform::CPUDeviceContext, int>);
C
chengduoZH 已提交
150 151
REGISTER_OP_CPU_KERNEL(
    concat_grad,
152 153 154 155
    ops::ConcatGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ConcatGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ConcatGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::ConcatGradKernel<paddle::platform::CPUDeviceContext, int>);