randint_op.cc 6.7 KB
Newer Older
S
silingtong123 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/operators/uniform_random_op.h"
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace operators {

template <typename T>
class CPURandintKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    std::vector<int64_t> new_shape;
    auto list_new_shape_tensor =
        ctx.MultiInput<framework::Tensor>("ShapeTensorList");
    if (list_new_shape_tensor.size() > 0 || ctx.HasInput("ShapeTensor")) {
      if (ctx.HasInput("ShapeTensor")) {
        auto* shape_tensor = ctx.Input<framework::Tensor>("ShapeTensor");
        new_shape = GetNewDataFromShapeTensor(shape_tensor);
      } else if (list_new_shape_tensor.size() > 0) {
        new_shape = GetNewDataFromShapeTensorList(list_new_shape_tensor);
      }
    }

    auto* out = ctx.Output<framework::LoDTensor>("Out");
    if (!new_shape.empty()) out->Resize(framework::make_ddim(new_shape));
    T* data = out->mutable_data<T>(ctx.GetPlace());
    int64_t size = out->numel();
    std::random_device rd;
    std::mt19937 gen(rd());
    std::uniform_int_distribution<> dist(ctx.Attr<int>("low"),
                                         ctx.Attr<int>("high") - 1);
    for (int64_t i = 0; i < size; ++i) data[i] = dist(gen);
  }
};

class RandintOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("Out"), true,
        platform::errors::InvalidArgument("Output(Out) of RandintOp is null."));
    PADDLE_ENFORCE_LT(
        ctx->Attrs().Get<int>("low"), ctx->Attrs().Get<int>("high"),
        platform::errors::InvalidArgument("randint's low must less then high, "
                                          "but received: low = %d, high = %d.",
                                          ctx->Attrs().Get<int>("low"),
                                          ctx->Attrs().Get<int>("high")));

    if (ctx->HasInputs("ShapeTensorList")) {
      // top prority shape
      auto inputs_name = ctx->Inputs("ShapeTensorList");
      PADDLE_ENFORCE_GT(
          inputs_name.size(), 0,
          platform::errors::InvalidArgument(
              "Input(ShapeTensorList)'size of Op(randint) can't be zero."
              "Please check the Attr(shape)'s size of"
              "Op(fluid.layers.randint).)"));
      auto out_dims = std::vector<int>(inputs_name.size(), -1);
      ctx->SetOutputDim("Out", framework::make_ddim(out_dims));

      return;
    }

    auto& shape = ctx->Attrs().Get<std::vector<int64_t>>("shape");
    if (ctx->HasInput("ShapeTensor") && shape.empty()) {
      auto shape_dims = ctx->GetInputDim("ShapeTensor");
      PADDLE_ENFORCE_EQ(shape_dims.size(), 1,
                        platform::errors::InvalidArgument(
                            "ShapeError: Input(ShapeTensor)' dimension size of "
                            "Op(randint) must be 1."
                            "But received ShapeTensor's dimensions = %d.",
                            shape_dims.size()));
      int num_ele = 1;
      for (int i = 0; i < shape_dims.size(); ++i) {
        num_ele *= shape_dims[i];
      }
      auto vec_dims = std::vector<int64_t>(num_ele, -1);
      auto out_dims = framework::make_ddim(vec_dims);
      ctx->SetOutputDim("Out", out_dims);
      return;
    }

    PADDLE_ENFORCE_EQ(shape.empty(), false,
                      platform::errors::InvalidArgument(
                          "if there is no Input(ShapeTensorList) and no "
                          "Input(ShapeTensor),the "
                          "attr(shape) information must "
                          "be set by Attr(shape)."));

    std::vector<int64_t> tensor_shape;
    tensor_shape.reserve(shape.size());
    for (auto dim : shape) {
      tensor_shape.push_back(static_cast<int64_t>(dim));
    }
    ctx->SetOutputDim("Out", framework::make_ddim(tensor_shape));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        static_cast<framework::proto::VarType::Type>(ctx.Attr<int>("dtype")),
        ctx.GetPlace());
  }
};

class RandintOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("ShapeTensor",
             "(Tensor<int64_t> or Tensor<int32_t>, optional) . If provided, "
             "randint"
             "according to "
             "this given shape. It means that it has a higher priority than "
             "Attr(shape) but a lower priority than Input(ShapeTensor).")
        .AsDispensable();
    AddInput("ShapeTensorList",
             "(vector<Tensor<int64_t>> or vector<Tensor<int32_t>>, optional). "
             "If provided, randint use this. The shape of the tensor "
             "must be [1], it has the highest priority comparing with "
             "Input(ShapeTensor) and attr(shape).")
        .AsDuplicable()
        .AsDispensable();
    AddOutput("Out", "The output tensor of randint op");
    AddComment(R"DOC(
This operator initializes a tensor with random integers sampled from a
uniform distribution. The random result is in set [low, high).
)DOC");
    AddAttr<std::vector<int64_t>>("shape", "The shape of the output tensor.")
        .SetDefault({});
    AddAttr<int>("low",
                 "The lower bound on the range of random values to generate.");
    AddAttr<int>("high",
                 "The upper bound on the range of random values to generate.");
    AddAttr<int>("dtype", "Output tensor data type. [Default INT64].")
        .SetDefault(framework::proto::VarType::INT64);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OPERATOR(
    randint, ops::RandintOp, ops::RandintOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>)

REGISTER_OP_CPU_KERNEL(randint, ops::CPURandintKernel<int>,
                       ops::CPURandintKernel<int64_t>)