parameter_send.cc 9.0 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <set>
#include <string>
#include <vector>

#include "paddle/fluid/operators/distributed/parameter_send.h"

#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"

#include "paddle/fluid/operators/distributed/distributed.h"
#include "paddle/fluid/operators/distributed/rpc_client.h"
#include "paddle/fluid/operators/distributed/variable_response.h"
#include "paddle/fluid/operators/distributed_ops/send_recv_util.h"

namespace paddle {
namespace operators {
namespace distributed {

using LoDTensor = framework::LoDTensor;
using LoDTensor = framework::LoDTensor;
using SelectedRows = framework::SelectedRows;
using DDim = framework::DDim;

static size_t GetSectionIndex(int64_t id,
                              const std::vector<int64_t>& abs_sections) {
  for (size_t i = 1; i < abs_sections.size(); ++i) {
    if (id < abs_sections[i]) {
      return i - 1;
    }
  }
  return abs_sections.size() - 1;
}

50 51 52 53 54 55 56 57 58
static int FindOutIdx(int row, const std::vector<int64_t>& abs_sections) {
  for (size_t i = 1; i < abs_sections.size(); ++i) {
    if (row < abs_sections[i]) {
      return i - 1;
    }
  }
  return abs_sections.size() - 1;
}

Q
Qiao Longfei 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
static std::vector<int64_t> ToAbsoluteSection(
    const std::vector<int>& height_sections) {
  std::vector<int64_t> abs_sections;
  abs_sections.resize(height_sections.size());
  abs_sections[0] = 0;
  for (size_t i = 1; i < height_sections.size(); ++i) {
    abs_sections[i] = height_sections[i - 1] + abs_sections[i - 1];
  }
  return abs_sections;
}

static std::vector<std::vector<int64_t>> SplitIds(
    const std::vector<int64_t>& ids_vector,
    const std::vector<int>& height_section, framework::Scope* scope) {
  std::set<int64_t> all_ids;
  for (auto id : ids_vector) {
    all_ids.insert(id);
  }

  auto abs_sections = ToAbsoluteSection(height_section);
  std::vector<std::vector<int64_t>> splited_ids;
  splited_ids.resize(height_section.size() + 1);
  for (auto& id : all_ids) {
    auto section_index = GetSectionIndex(id, abs_sections);
    splited_ids[section_index].push_back(id - abs_sections[section_index]);
  }
  return splited_ids;
}

static void SplitIdsIntoMultipleVarsBySection(
    const std::vector<std::string>& in_var_names,
    const std::vector<int>& height_section,
    const std::vector<std::vector<int64_t>>& splited_ids,
    framework::Scope* scope) {
  PADDLE_ENFORCE_EQ(in_var_names.size(), height_section.size(), "");

  auto place = platform::CPUPlace();

  for (size_t i = 0; i < in_var_names.size(); ++i) {
    auto* id_tensor =
        scope->Var(in_var_names[i])->GetMutable<framework::LoDTensor>();
    auto& ids = splited_ids[i];
    if (!ids.empty()) {
      auto* id_tensor_data = id_tensor->mutable_data<int64_t>(
          framework::make_ddim({static_cast<int64_t>(ids.size()), 1}), place);
      memcpy(id_tensor_data, ids.data(), sizeof(int64_t) * ids.size());
    }
  }
}

109
template <typename T>
Q
Qiao Longfei 已提交
110 111 112 113
void send(const std::string& var_name,
          const std::vector<std::string>& send_varnames,
          const std::vector<std::string>& epmap,
          const std::vector<int>& height_sections,
114 115
          const framework::ExecutionContext& ctx, const framework::Scope& scope,
          bool sync) {
Q
Qiao Longfei 已提交
116 117 118 119
  framework::Scope* local_scope = scope.NewTmpScope();

  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  auto& cpu_ctx = *pool.Get(platform::CPUPlace());
120
  auto& actual_ctx = *pool.Get(ctx.GetPlace());
Q
Qiao Longfei 已提交
121 122 123

  distributed::RPCClient* rpc_client =
      distributed::RPCClient::GetInstance<RPCCLIENT_T>(
124
          ctx.Attr<int>("trainer_id"));
Q
Qiao Longfei 已提交
125 126 127 128 129 130 131 132 133 134

  auto* send_var = scope.FindVar(var_name);
  size_t out_num = send_varnames.size();
  if (send_var->IsType<framework::LoDTensor>()) {
    auto& send_tensor = send_var->Get<framework::LoDTensor>();
    auto& send_tensor_dims = send_tensor.dims();
    std::vector<framework::DDim> outs_dims;
    outs_dims.reserve(out_num);

    // infer output shape
135
    int num = ctx.Attr<int>("num");
Q
Qiao Longfei 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    if (num > 0) {
      int64_t in_axis_dim = send_tensor_dims[0];
      PADDLE_ENFORCE_EQ(in_axis_dim % num, 0,
                        "tensor split does not result"
                        " in an equal division");
      size_t out_axis_dim = in_axis_dim / num;
      for (size_t i = 0; i < out_num; ++i) {
        auto dim = send_tensor_dims;
        dim[0] = out_axis_dim;
        outs_dims.push_back(dim);
      }
    } else if (height_sections.size() > 0) {
      PADDLE_ENFORCE_EQ(height_sections.size(), out_num,
                        "tensor split sections size"
                        "should be equal to output size.");
      for (size_t i = 0; i < out_num; ++i) {
        auto dim = send_tensor_dims;
        dim[0] = height_sections[i];
        outs_dims.push_back(dim);
      }
    }

    // create output var in local scope
    size_t row_offset = 0;
    for (auto i = 0; i < out_num; ++i) {
      auto* out =
          local_scope->Var(send_varnames[i])->GetMutable<framework::Tensor>();
      *out = send_tensor.Slice(row_offset, row_offset + outs_dims[i][0]);
      row_offset += outs_dims[i][0];
    }
166 167 168 169 170 171 172 173 174 175 176 177 178 179
  } else if (send_var->IsType<framework::SelectedRows>()) {
    auto& send_slr = send_var->Get<framework::SelectedRows>();
    auto abs_sections = ToAbsoluteSection(height_sections);

    auto send_rows = send_slr.rows();
    std::vector<std::vector<int>> outs_rows_idx;
    std::vector<std::vector<int>> outs_dense_idx;

    outs_rows_idx.resize(out_num);
    outs_dense_idx.resize(out_num);

    auto row_numel = send_slr.value().numel() / send_slr.value().dims()[0];
    auto src = send_slr.value().data<T>();

Q
Qiao Longfei 已提交
180
    // create output var in local scope
181
    std::vector<framework::SelectedRows*> outs;
Q
Qiao Longfei 已提交
182
    for (auto& name : send_varnames) {
183 184 185 186 187 188 189 190 191
      auto* out = local_scope->Var(name)->GetMutable<framework::SelectedRows>();
      outs.push_back(out);
    }

    // split rows index into output sparse vars
    for (size_t i = 0; i < send_rows.size(); ++i) {
      int out_idx = FindOutIdx(send_rows[i], abs_sections);
      outs_rows_idx[out_idx].push_back(send_rows[i]);
      outs_dense_idx[out_idx].push_back(i);
Q
Qiao Longfei 已提交
192
    }
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
    auto place = ctx.GetPlace();

    for (size_t i = 0; i < outs_rows_idx.size(); ++i) {
      auto rows_idx = outs_rows_idx[i];
      outs[i]->set_height(height_sections[i]);
      auto dims = send_slr.GetCompleteDims();
      dims[0] = rows_idx.size();
      outs[i]->mutable_value()->mutable_data<T>(dims, send_slr.place());
      outs[i]->mutable_rows()->clear();
      if (rows_idx.size() > 0) {
        for (auto idx : rows_idx) {
          outs[i]->mutable_rows()->push_back(idx - abs_sections[i]);
        }
        auto dst = outs[i]->mutable_value()->mutable_data<T>(ctx.GetPlace());
        for (size_t j = 0; j < rows_idx.size(); j++) {
          if (platform::is_cpu_place(place)) {
            memory::Copy(
                platform::CPUPlace(), dst + j * row_numel, platform::CPUPlace(),
                src + outs_dense_idx[i][j] * row_numel, sizeof(T) * row_numel);
          } else {
#ifdef PADDLE_WITH_CUDA
            auto stream = ctx.cuda_device_context().stream();
            memory::Copy(platform::CUDAPlace(), dst + j * row_numel,
                         platform::CUDAPlace(),
                         src + outs_dense_idx[i][j] * row_numel,
                         sizeof(T) * row_numel, stream);
#else
            PADDLE_THROW("Paddle is not compiled with GPU");
#endif
          }
        }
      }
      PADDLE_ENFORCE_EQ(rows_idx.size(), outs[i]->rows().size(),
                        "rows should has the same size with tensor dim 0");
    }

Q
Qiao Longfei 已提交
229
  } else {
230
    PADDLE_THROW("unsupported var type to send!");
Q
Qiao Longfei 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
  }

  std::vector<distributed::VarHandlePtr> rets;
  for (size_t i = 0; i < send_varnames.size(); i++) {
    auto& send_var_name = send_varnames[i];
    auto& endpoint = epmap[i];
    if (NeedSend(*local_scope, send_var_name)) {
      VLOG(3) << "sending " << send_var_name << " to " << endpoint;
      rets.push_back(rpc_client->AsyncSendVar(endpoint, cpu_ctx, *local_scope,
                                              send_var_name));
    } else {
      VLOG(3) << "don't send non-initialized variable: " << send_varnames[i];
    }
  }

  if (sync) {
    for (size_t i = 0; i < rets.size(); i++) {
      PADDLE_ENFORCE(rets[i]->Wait(), "internal error in RPCClient");
    }
  }

  delete local_scope;
}

};  // namespace distributed
};  // namespace operators
};  // namespace paddle