layers.py 10.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
Xin Pan 已提交
15
import collections
16 17 18
import contextlib
import sys
import numpy as np
M
minqiyang 已提交
19
import collections
X
Xin Pan 已提交
20
from .. import unique_name
21
from paddle.fluid import core
22
from .layer_object_helper import LayerObjectHelper
23 24
from paddle.fluid import framework

X
Xin Pan 已提交
25
__all__ = ['Layer', 'PyLayer']
26 27


X
Xin Pan 已提交
28
class Layer(core.Layer):
X
Xin Pan 已提交
29 30 31 32 33 34 35 36 37
    """Layers composed of operators.

    Args:
        name_scope: prefix name used by the layer to name parameters.
            If prefix is "my_model/layer_1", parameter name in MyLayer
            can be "my_model/layer_1/MyLayer/w_n", where w is the parameter
            base name and n is an unique suffix auto-generated.
        dtype: data type for the variables in the layer.
    """
X
Xin Pan 已提交
38

X
Xin Pan 已提交
39 40 41
    def __init__(self, name_scope, dtype=core.VarDesc.VarType.FP32):
        self._full_name = unique_name.generate(name_scope + "/" +
                                               self.__class__.__name__)
X
Xin Pan 已提交
42
        self._built = False
M
minqiyang 已提交
43
        self._dtype = dtype
X
Xin Pan 已提交
44 45
        self._parameters = collections.OrderedDict()
        self._sub_layers = collections.OrderedDict()
46

47 48
        self._helper = LayerObjectHelper(self._full_name)

X
Xin Pan 已提交
49 50 51 52 53 54 55 56 57
    def full_name(self):
        """Full name for this layers.

          Full name is composed by name_scope + "/" + MyLayer.__class__.__name__

        Returns full name of this name.
        """
        return self._full_name

58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
    def create_parameter(self,
                         attr,
                         shape,
                         dtype,
                         is_bias=False,
                         default_initializer=None):
        """Create parameters for this layers.

           Args:
               attr: [ParamAttr] should be the parameter attribute for this parameter
               shape: shape of the paramter
               dtype: data type of this parameter
               is_bias: if this is a bias parameter
               default_initializer: set the default initializer for this parameter

        Returns created parameter Variable.
        """
        return self._helper.create_parameter(attr, shape, dtype, is_bias,
                                             default_initializer)

    # TODO: Add more parameter list when we need them
    def create_variable(self,
                        name=None,
                        persistable=None,
                        dtype=None,
                        type=core.VarDesc.VarType.LOD_TENSOR):
        """Create Variable for this layers.

           Args:
               name: name of the variable
               persistable: if set this variable persistable
               dtype: data type of data in the variable
               type: type of the variable

        Returns created Variable.
        """
        if name is not None:
            var_name = ".".join([self._full_name, name])
        else:
            var_name = unique_name.generate(".".join(
                [self._full_name, "_generated_var"]))

        return self._helper.main_program.current_block().create_var(
            name=var_name, persistable=persistable, dtype=dtype, type=type)

X
polish  
Xin Pan 已提交
103 104
    def parameters(self, include_sublayers=True):
        """Returns a list of Parameters from current and sub-layers.
X
Xin Pan 已提交
105 106 107 108 109 110

        Args:
            include_sublayers: If true, also include the parameters from
            sublayers.

        Returns a list of Parameters.
X
Xin Pan 已提交
111
        """
X
polish  
Xin Pan 已提交
112 113 114 115 116 117
        ret = [p for p in self._parameters.values()]
        if include_sublayers:
            for l in self._sub_layers.values():
                for p in l.parameters(include_sublayers):
                    ret.append(p)
        return ret
X
Xin Pan 已提交
118

X
Xin Pan 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
    def sublayers(self, include_sublayers=True):
        """Returns a list of sub layers.

        Args:
            include_sublayers: If true, also include the layers from sublayers.

        Returns a list of sub layers.
        """
        ret = [l for l in self._sub_layers.values()]
        if include_sublayers:
            for l in self._sub_layers.values():
                for sub_l in l.sublayers(include_sublayers):
                    ret.append(sub_l)
        return ret

X
Xin Pan 已提交
134 135
    def clear_gradients(self):
        for p in self.parameters():
M
minqiyang 已提交
136
            p._clear_gradient()
X
Xin Pan 已提交
137

X
polish  
Xin Pan 已提交
138
    def _build_once(self, *args):
139 140
        pass

141
    def __call__(self, *inputs):
X
Xin Pan 已提交
142
        if not self._built:
143 144
            self._build_once(*inputs)

145
        outputs = self.forward(*inputs)
X
Xin Pan 已提交
146
        self._built = True
M
minqiyang 已提交
147
        return outputs
M
minqiyang 已提交
148

149 150
    def forward(self, *inputs):
        raise NotImplementedError
X
Xin Pan 已提交
151 152 153 154

    def backward(self, *inputs):
        raise ValueError("Layer shouldn't implement backward")

X
Xin Pan 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
    def add_sublayer(self, name, sublayer):
        """Adds a sub Layer instance.

          Added sublayer can be access like self.name.

        Args:
            name: name of this sublayer.
            sublayer: an instance of Layer.
        Returns:
            the sublayer passed in.
        """
        assert isinstance(sublayer, core.Layer)
        self._sub_layers[name] = sublayer
        return sublayer

    def add_parameter(self, name, parameter):
        """Adds a Parameter instance.

          Added parameter can be access like self.name.

        Args:
            name: name of this sublayer.
            parameter: an instance of Parameter.
        Returns:
            the parameter passed in.
        """
        assert isinstance(parameter, framework.Parameter)
        self._parameters[name] = parameter
        return parameter

X
Xin Pan 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
    def __getattr__(self, name):
        if name in self._parameters:
            return self._parameters[name]
        elif name in self._sub_layers:
            return self._sub_layers[name]

    def __setattr__(self, name, value):
        if isinstance(value, framework.Parameter):
            params = self.__dict__.get('_parameters', None)
            if params is None:
                raise ValueError(
                    "super(YourLayer, self).__init__() should be called first")
            params[name] = value
        elif isinstance(value, core.Layer):
            layers = self.__dict__.get('_sub_layers', None)
            if layers is None:
                raise ValueError(
                    "super(YourLayer, self).__init__() should be called first")
            layers[name] = value
        else:
            object.__setattr__(self, name, value)

    def __delattr__(self, name):
        if name in self._parameters:
            del self._parameters[name]
        elif name in self._sub_layers:
            del self._sub_layers[name]
        else:
            object.__delattr__(self, name)

215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
    def state_dict(self, destination=None, prefix='', include_sublayers=True):
        if destination is None:
            destination = collections.OrderedDict()
        for name, data in self._parameters.items():
            if data is not None:
                destination[prefix + name] = data

        if include_sublayers:
            for layer_name, layer_item in self._sub_layers.items():
                if layer_item is not None:
                    destination_temp = destination.copy()
                    destination_temp.update(
                        layer_item.state_dict(destination_temp, prefix +
                                              layer_name + ".",
                                              include_sublayers))
                    destination = destination_temp
        return destination

    def load_dict(self, stat_dict, include_sublayers=True):
        for name, item in self.__dict__.get('_parameters', None).items():
            if item.name in stat_dict:
                self.__setattr__(name, stat_dict[item.name])

        if include_sublayers:
            for layer_name, layer_item in self._sub_layers.items():
                if layer_item is not None:
                    layer_item.load_dict(stat_dict)

X
Xin Pan 已提交
243

X
Xin Pan 已提交
244
class PyLayer(core.PyLayer):
X
Xin Pan 已提交
245 246
    """Layers composed of user-defined python codes."""

X
Xin Pan 已提交
247 248
    def __init__(self):
        super(PyLayer, self).__init__()
X
Xin Pan 已提交
249

X
Xin Pan 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
    @classmethod
    def _do_forward(cls, inputs):
        return cls._to_tuple(cls.forward(inputs))

    @classmethod
    def _do_backward(cls, inputs):
        return cls._to_tuple(cls.backward(inputs))

    @staticmethod
    def _to_tuple(inputs):
        if not isinstance(inputs, list) and not isinstance(inputs, tuple):
            inputs = [inputs]
        ret = []
        for inp in inputs:
            tensor = core.LoDTensor()
            tensor.set(inp, core.CPUPlace())
            ret.append(tensor)
        return tuple(ret)

X
Xin Pan 已提交
269
    @staticmethod
M
minqiyang 已提交
270
    def forward(*inputs):
X
Xin Pan 已提交
271 272
        raise NotImplementedError

X
Xin Pan 已提交
273
    @staticmethod
M
minqiyang 已提交
274
    def backward(*douts):
X
Xin Pan 已提交
275
        raise NotImplementedError
X
Xin Pan 已提交
276 277

    @classmethod
M
minqiyang 已提交
278
    def __call__(cls, *inputs):
X
Xin Pan 已提交
279 280
        tracer = framework._imperative_tracer()
        block = framework.default_main_program().current_block()
M
minqiyang 已提交
281
        ivar_inputs = [x._ivar for x in inputs]
X
Xin Pan 已提交
282

X
polish  
Xin Pan 已提交
283 284
        if not hasattr(cls, 'forward_id'):
            cls.forward_id = core.PyLayer.num_funcs() + 1
X
Xin Pan 已提交
285
            PyLayer.register_func(cls.forward_id, cls._do_forward)
X
polish  
Xin Pan 已提交
286
            cls.backward_id = core.PyLayer.num_funcs() + 1
X
Xin Pan 已提交
287
            PyLayer.register_func(cls.backward_id, cls._do_backward)
X
Xin Pan 已提交
288

289
        iop = core.OpBase(cls.__class__.__name__ + str(cls.forward_id))
X
polish  
Xin Pan 已提交
290 291
        iop.forward_id = cls.forward_id
        iop.backward_id = cls.backward_id
X
Xin Pan 已提交
292
        block.ops.append(iop)
M
minqiyang 已提交
293
        ivars = tracer.py_trace(iop, ivar_inputs, False)
X
Xin Pan 已提交
294 295
        ret = []
        for ivar in ivars:
M
minqiyang 已提交
296
            tensor = ivar.value().get_tensor()
X
Xin Pan 已提交
297 298 299 300 301 302 303 304 305
            py_var = framework.Variable(
                block,
                type=core.VarDesc.VarType.LOD_TENSOR,
                name=None,
                shape=tensor.shape(),
                dtype=tensor._dtype(),
                ivar=ivar)
            ret.append(py_var)
        return ret