cos_sim_op.cc 6.1 KB
Newer Older
X
Xinghai Sun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/operators/cos_sim_op.h"

namespace paddle {
namespace operators {

using framework::Tensor;

class CosSimOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(const framework::InferShapeContext &ctx) const override {
28
    // notnull check
29 30
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) must not be null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"), "Input(Y) must not be null.");
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

    // shape check
    auto x_dims = ctx.Input<Tensor>("X")->dims();
    auto y_dims = ctx.Input<Tensor>("Y")->dims();
    PADDLE_ENFORCE_EQ(framework::arity(x_dims), framework::arity(y_dims),
                      "Ranks of Input(X) and Input(Y) must be equal.");
    PADDLE_ENFORCE_GE(framework::arity(x_dims), 2,
                      "Rank of Input(X) must not be less than 2.");
    PADDLE_ENFORCE_EQ(
        framework::slice_ddim(x_dims, 1, framework::arity(x_dims)),
        framework::slice_ddim(y_dims, 1, framework::arity(y_dims)),
        "All dimensions except 1st of Input(X) and Input(Y) must be equal.");
    PADDLE_ENFORCE(x_dims[0] == y_dims[0] || y_dims[0] == 1,
                   "1st dimension of Input(Y) must be equal to Input(X) or "
                   "just 1 (which will be broadcasted to match Input(X)).");

    // resize tensor
    ctx.Output<Tensor>("Out")->Resize({x_dims[0], 1});
    ctx.Output<Tensor>("XNorm")->Resize({x_dims[0], 1});
    ctx.Output<Tensor>("YNorm")->Resize({y_dims[0], 1});
X
Xinghai Sun 已提交
51 52 53 54 55 56 57
  }
};

class CosSimOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  CosSimOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
58 59
    AddInput("X", "The 1st input of cos_sim op.");
    AddInput("Y", "The 2nd input of cos_sim op.");
X
Xinghai Sun 已提交
60
    AddOutput("Out", "The output of cos_sim op.");
61 62 63
    AddOutput("XNorm", "Row norm of the first input.").AsIntermediate();
    AddOutput("YNorm", "Row norm of the second input.").AsIntermediate();

X
Xinghai Sun 已提交
64 65 66
    AddComment(R"DOC(
Cosine Similarity Operator.

67 68 69 70 71 72
The equation is: Out = X^T * Y / (sqrt(X^T * X) * sqrt(Y^T * Y)).

Input(X) and Input(Y) must have the same shape, except that the 1st dimension
of Input(Y) could be just 1 (different from Input(X)), which will be
broadcasted to match the shape of Input(X) before computing their cosine
similarity.
X
Xinghai Sun 已提交
73 74 75 76 77 78 79 80 81 82
)DOC");
  }
};

class CosSimOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(const framework::InferShapeContext &ctx) const override {
83
    // notnull check
84 85 86 87 88 89
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) must not be null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"), "Input(Y) must not be null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("XNorm"),
                            "Input(XNorm) must not be null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("YNorm"),
                            "Input(YNorm) must not be null.");
90 91
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Out"),
                            "Input(Out) must not be null.");
X
Xinghai Sun 已提交
92
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
93
                            "Input(Out@GRAD) must not be null.");
X
Xinghai Sun 已提交
94

95
    // shape check
X
Xinghai Sun 已提交
96 97
    auto x_dims = ctx.Input<Tensor>("X")->dims();
    auto y_dims = ctx.Input<Tensor>("Y")->dims();
98 99 100 101 102 103 104 105 106 107 108
    PADDLE_ENFORCE_GE(framework::arity(x_dims), framework::arity(y_dims),
                      "Ranks of Input(X) and Input(Y) must be equal.");
    PADDLE_ENFORCE_GE(framework::arity(x_dims), 2,
                      "Rank of Input(X) must not be less than 2.");
    PADDLE_ENFORCE_EQ(
        framework::slice_ddim(x_dims, 1, framework::arity(x_dims)),
        framework::slice_ddim(y_dims, 1, framework::arity(y_dims)),
        "All dimensions except 1st of Input(X) and Input(Y) must be equal.");
    PADDLE_ENFORCE(x_dims[0] == y_dims[0] || y_dims[0] == 1,
                   "1st dimension of Input(Y) must be equal to Input(X) or "
                   "just 1 (which will be broadcasted to match Input(X)).");
109
    auto xnorm_dims = ctx.Input<Tensor>("XNorm")->dims();
110 111
    PADDLE_ENFORCE_EQ(xnorm_dims, framework::make_ddim({x_dims[0], 1}),
                      "Shape of Input(XNorm) must be [X.Dim(0), 1].");
112
    auto ynorm_dims = ctx.Input<Tensor>("YNorm")->dims();
113 114 115 116 117 118 119 120 121 122 123
    PADDLE_ENFORCE_EQ(ynorm_dims, framework::make_ddim({y_dims[0], 1}),
                      "Shape of Input(YNorm) must be [Y.Dim(0), 1].");
    auto out_dims = ctx.Input<Tensor>("Out")->dims();
    PADDLE_ENFORCE_EQ(out_dims, framework::make_ddim({x_dims[0], 1}),
                      "Shape of Input(Out) must be [X.Dim(0), 1].");
    auto out_grad_dims =
        ctx.Input<Tensor>(framework::GradVarName("Out"))->dims();
    PADDLE_ENFORCE_EQ(out_grad_dims, framework::make_ddim({x_dims[0], 1}),
                      "Shape of Input(Out@Grad) must be [X.Dim(0), 1].");

    // resize tensor
X
Xinghai Sun 已提交
124 125
    auto *x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *y_grad = ctx.Output<Tensor>(framework::GradVarName("Y"));
126 127
    if (x_grad) x_grad->Resize(x_dims);
    if (y_grad) y_grad->Resize(y_dims);
X
Xinghai Sun 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP(cos_sim, ops::CosSimOp, ops::CosSimOpMaker, cos_sim_grad,
            ops::CosSimOpGrad);
REGISTER_OP_CPU_KERNEL(cos_sim,
                       ops::CosSimKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
    cos_sim_grad, ops::CosSimGradKernel<paddle::platform::CPUPlace, float>);