parallel.py 20.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except jin compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
15
import six
Y
Yan Xu 已提交
16
import numpy as np
17
from collections import OrderedDict
18
from .. import core
19
from . import layers
C
chengduo 已提交
20
from . import parallel_helper
21 22
from .. import framework
from ..layers import collective
J
Jiabin Yang 已提交
23
from . import to_variable, no_grad
24

25
__all__ = ["prepare_context", "ParallelEnv", "DataParallel"]
26 27 28 29

ParallelStrategy = core.ParallelStrategy


C
chengduo 已提交
30 31 32 33 34 35 36 37 38
def prepare_context(strategy=None):
    if strategy is None:
        strategy = ParallelStrategy()
        strategy.nranks = Env().nranks
        strategy.local_rank = Env().local_rank
        strategy.trainer_endpoints = Env().trainer_endpoints
        strategy.current_endpoint = Env().current_endpoint
    if strategy.nranks < 2:
        return
39
    assert framework.in_dygraph_mode() is True, \
40
        "dygraph.prepare_context should be used with dygrahp mode."
41
    place = framework._current_expected_place()
C
chengduo 已提交
42
    assert place is not None, \
43
        "dygraph.prepare_context should be used in fluid.dygraph.guard(place) guard."
44
    if isinstance(place, core.CUDAPlace):
C
chengduo 已提交
45 46
        parallel_helper._set_parallel_ctx(
            core.NCCLParallelContext(strategy, place))
47 48 49
    else:
        # TODO(Yancey1989): add Gloo Parallel Context to support CPU parallel computation
        assert ("Only support CUDAPlace for now.")
C
chengduo 已提交
50 51
    parallel_helper._init_parallel_ctx()
    return strategy
52 53


54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
class ParallelEnv(object):
    """
    **Notes**:
        **The old class name was Env and will be deprecated. Please use new class name ParallelEnv.**

    This class is used to obtain the environment variables required for 
    the parallel execution of dynamic graph model.

    The dynamic graph parallel mode needs to be started using paddle.distributed.launch.
    By default, the related environment variable is automatically configured by this module.

    This class is generally used in with `fluid.dygraph.DataParallel` to configure dynamic graph models
    to run in parallel.

    Examples:
      .. code-block:: python

        # This example needs to run with paddle.distributed.launch, The usage is:
        #   python -m paddle.distributed.launch --selected_gpus=0,1 example.py
        # And the content of `example.py` is the code of following example.

        import numpy as np
        import paddle.fluid as fluid
        import paddle.fluid.dygraph as dygraph
        from paddle.fluid.optimizer import AdamOptimizer
        from paddle.fluid.dygraph.nn import Linear
        from paddle.fluid.dygraph.base import to_variable

        place = fluid.CUDAPlace(fluid.dygraph.ParallelEnv().dev_id)
        with fluid.dygraph.guard(place=place):

            # prepare the data parallel context
            strategy=dygraph.prepare_context()

            linear = Linear(1, 10, act="softmax")
            adam = fluid.optimizer.AdamOptimizer()

            # make the module become the data parallelism module
            linear = dygraph.DataParallel(linear, strategy)

            x_data = np.random.random(size=[10, 1]).astype(np.float32)
            data = to_variable(x_data)

            hidden = linear(data)
            avg_loss = fluid.layers.mean(hidden)

            # scale the loss according to the number of trainers.
            avg_loss = linear.scale_loss(avg_loss)

            avg_loss.backward()

            # collect the gradients of trainers.
            linear.apply_collective_grads()

            adam.minimize(avg_loss)
            linear.clear_gradients()
    """

112 113 114 115 116 117 118 119 120 121
    def __init__(self):
        self._nranks = int(os.getenv("PADDLE_TRAINERS_NUM", "1"))
        self._local_rank = int(os.getenv("PADDLE_TRAINER_ID", "0"))
        self._dev_id = int(os.getenv("FLAGS_selected_gpus", "0"))
        self._trainer_endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS",
                                            "").split(",")
        self._current_endpoint = os.getenv("PADDLE_CURRENT_ENDPOINT", "")

    @property
    def nranks(self):
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
        """
        The number of trainers, generally refers to the number of GPU cards used in training.

        Its value is equal to the value of the environment variable PADDLE_TRAINERS_NUM. The default value is 1.

        Examples:
          .. code-block:: python

            # execute this command in terminal: export PADDLE_TRAINERS_NUM=4
            import paddle.fluid as fluid
            
            env = fluid.dygraph.ParallelEnv()
            print("The nranks is %d" % env.nranks)
            # The nranks is 4
        """
137 138 139 140
        return self._nranks

    @property
    def local_rank(self):
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
        """
        The current trainer number.

        Its value is equal to the value of the environment variable PADDLE_TRAINER_ID. The default value is 0.

        Examples:
          .. code-block:: python

            # execute this command in terminal: export PADDLE_TRAINER_ID=0
            import paddle.fluid as fluid
            
            env = fluid.dygraph.ParallelEnv()
            print("The local rank is %d" % env.local_rank)
            # The local rank is 0
        """
156 157 158 159
        return self._local_rank

    @property
    def dev_id(self):
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
        """
        The ID of selected GPU card for parallel training.

        Its value is equal to the value of the environment variable FLAGS_selected_gpus. The default value is 0.

        Examples:
          .. code-block:: python

            # execute this command in terminal: export FLAGS_selected_gpus=1
            import paddle.fluid as fluid
            
            env = fluid.dygraph.ParallelEnv()
            print("The device id are %d" % env.dev_id)
            # The device id are 1
        """
175 176 177 178
        return self._dev_id

    @property
    def current_endpoint(self):
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
        """
        The endpoint of current trainer, it is in the form of (node IP + port).

        Its value is equal to the value of the environment variable PADDLE_CURRENT_ENDPOINT. The default value is "".

        Examples:
          .. code-block:: python
            
            # execute this command in terminal: export PADDLE_CURRENT_ENDPOINT=127.0.0.1:6170
            import paddle.fluid as fluid
            
            env = fluid.dygraph.ParallelEnv()
            print("The current endpoint are %s" % env.current_endpoint)
            # The current endpoint are 127.0.0.1:6170
        """
194
        return self._current_endpoint
195 196 197

    @property
    def trainer_endpoints(self):
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
        """
        The endpoints of all trainer nodes in the task, 
        which are used to broadcast the NCCL ID when NCCL2 is initialized.

        Its value is equal to the value of the environment variable PADDLE_TRAINER_ENDPOINTS. The default value is "".

        Examples:
          .. code-block:: python

            # execute this command in terminal: export PADDLE_TRAINER_ENDPOINTS=127.0.0.1:6170,127.0.0.1:6171
            import paddle.fluid as fluid
            
            env = fluid.dygraph.ParallelEnv()
            print("The trainer endpoints are %s" % env.trainer_endpoints)
            # The trainer endpoints are ['127.0.0.1:6170', '127.0.0.1:6171']
        """
214 215 216
        return self._trainer_endpoints


217 218 219 220 221 222
# NOTE: [ Compatible ] Originally this class name is `Env`. The semantics of the old class names
# are inaccurate and may confuse users, so replace it with `ParallelEnv`, but to be compatible
# with the old examples, here still need to keep this name.
Env = ParallelEnv


223
class DataParallel(layers.Layer):
C
chengduo 已提交
224
    """
225
    Run the dygraph module with data parallelism.
C
chengduo 已提交
226

227
    Currently, DataParallel class only supports to run the dynamic graph
C
chengduo 已提交
228
    with multi-process. The usage is:
229
    `python -m paddle.distributed.launch --selected_gpus=0,1 dynamic_graph_test.py`.
C
chengduo 已提交
230 231
    And the content of `dynamic_graph_test.py` is the code of examples.

232 233 234 235 236 237 238 239
    Args:
        layers(Layer): The module that should be executed by data parallel.
        strategy(ParallelStrategy): The strategy of data parallelism, contains 
            environment configuration related to parallel execution.

    Returns:
        Layer: The data paralleled module.

C
chengduo 已提交
240 241 242 243 244 245 246
    Examples:
        .. code-block:: python

           import numpy as np
           import paddle.fluid as fluid
           import paddle.fluid.dygraph as dygraph
           from paddle.fluid.optimizer import AdamOptimizer
247
           from paddle.fluid.dygraph.nn import Linear
C
chengduo 已提交
248 249
           from paddle.fluid.dygraph.base import to_variable

250
           place = place = fluid.CUDAPlace(fluid.dygraph.ParallelEnv().dev_id)
C
chengduo 已提交
251 252 253
           with fluid.dygraph.guard(place=place):

               # prepare the data parallel context
254
               strategy=dygraph.prepare_context()
C
chengduo 已提交
255

256
               linear = Linear(1, 10, act="softmax")
C
chengduo 已提交
257 258 259
               adam = fluid.optimizer.AdamOptimizer()

               # make the module become the data parallelism module
260
               linear = dygraph.DataParallel(linear, strategy)
C
chengduo 已提交
261 262 263 264

               x_data = np.random.random(size=[10, 1]).astype(np.float32)
               data = to_variable(x_data)

265
               hidden = linear(data)
C
chengduo 已提交
266 267 268
               avg_loss = fluid.layers.mean(hidden)

               # scale the loss according to the number of trainers.
269
               avg_loss = linear.scale_loss(avg_loss)
C
chengduo 已提交
270 271 272 273

               avg_loss.backward()

               # collect the gradients of trainers.
274
               linear.apply_collective_grads()
C
chengduo 已提交
275 276

               adam.minimize(avg_loss)
277
               linear.clear_gradients()
C
chengduo 已提交
278 279
    """

Y
Yan Xu 已提交
280
    def __init__(self, layers, strategy):
281 282
        super(DataParallel,
              self).__init__(layers.full_name() + "_data_parallel")
C
chengduo 已提交
283

284
        self._layers = layers
Y
Yan Xu 已提交
285
        self._strategy = strategy
286 287

    def forward(self, *inputs, **kwargs):
Y
Yan Xu 已提交
288 289 290
        return self._layers(*inputs, **kwargs)

    def scale_loss(self, loss):
C
chengduo 已提交
291 292 293 294 295 296
        """
        Scale the loss. In data parallel mode, the loss should be scale with
        the number of trainers. If not in data parallel mode, return the loss
        directly.

        Args:
297
            loss(Variable): The loss of the current Model.
C
chengduo 已提交
298 299

        Returns:
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
            Variable: the scaled loss.

        Examples:
            .. code-block:: python

                import numpy as np
                import paddle.fluid as fluid
                import paddle.fluid.dygraph as dygraph
                from paddle.fluid.optimizer import AdamOptimizer
                from paddle.fluid.dygraph.nn import Linear
                from paddle.fluid.dygraph.base import to_variable

                place = place = fluid.CUDAPlace(fluid.dygraph.ParallelEnv().dev_id)
                with fluid.dygraph.guard(place=place):
                    strategy=dygraph.prepare_context()
                    linear = Linear(1, 10, act="softmax")
                    adam = fluid.optimizer.AdamOptimizer()
                    linear = dygraph.DataParallel(linear, strategy)

                    x_data = np.random.random(size=[10, 1]).astype(np.float32)
                    data = to_variable(x_data)
                    hidden = linear(data)
                    avg_loss = fluid.layers.mean(hidden)

                    # scale the loss according to the number of trainers.
                    avg_loss = linear.scale_loss(avg_loss)

                    avg_loss.backward()
                    linear.apply_collective_grads()

                    adam.minimize(avg_loss)
                    linear.clear_gradients()
C
chengduo 已提交
332 333
        """
        if not self._is_data_parallel_mode():
Y
Yan Xu 已提交
334
            return loss
C
chengduo 已提交
335

Y
Yan Xu 已提交
336 337 338 339 340 341
        loss_scale = to_variable(
            np.array([self._strategy.nranks]).astype("float32"))
        loss_scale.stop_gradient = True
        loss = loss / loss_scale
        return loss

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
    def _coalesce_tensors(self, var_groups):
        from ..layers import nn
        coalesced_grads_and_grad_vars = []
        for group_id, grad_vars in var_groups.items():
            flattened_vars = []
            g_var_shapes = []
            for g_var in grad_vars:
                g_var_shapes.append(g_var.shape)
                flattened_vars.append(
                    nn.reshape(
                        x=g_var, shape=[np.prod(g_var.shape)], inplace=True))
            coalesced_grad = nn.concat(flattened_vars)
            coalesced_grads_and_grad_vars.append(
                [coalesced_grad, grad_vars, g_var_shapes])
        return coalesced_grads_and_grad_vars

358 359 360 361 362 363 364 365 366
    def _reshape_inplace(self, x, shape):
        x_shape = self._helper.create_variable_for_type_inference(dtype=x.dtype)
        self._helper.append_op(
            type="reshape2",
            inputs={'X': x},
            attrs={'shape': shape},
            outputs={'Out': x,
                     'XShape': x_shape})

367 368 369 370
    def _split_tensors(self, coalesced_grads_and_grad_vars):
        from ..layers import nn
        for coalesced_grad, origin_grad_vars, grad_shapes in coalesced_grads_and_grad_vars:
            grad_var_len = [np.prod(g_shape) for g_shape in grad_shapes]
371 372 373 374 375 376 377
            self._helper.main_program.current_block().append_op(
                type='split',
                inputs={'X': coalesced_grad},
                outputs={'Out': origin_grad_vars},
                attrs={'sections': grad_var_len,
                       'axis': 0})
            for g_var, g_shape in zip(origin_grad_vars, grad_shapes):
378 379
                self._reshape_inplace(x=g_var, shape=g_shape)
                assert g_var.shape == g_shape
380

J
Jiabin Yang 已提交
381
    @no_grad
Y
Yan Xu 已提交
382
    def apply_collective_grads(self):
C
chengduo 已提交
383 384
        """
        AllReduce the Parameters' gradient.
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414

        Examples:
            .. code-block:: python

                import numpy as np
                import paddle.fluid as fluid
                import paddle.fluid.dygraph as dygraph
                from paddle.fluid.optimizer import AdamOptimizer
                from paddle.fluid.dygraph.nn import Linear
                from paddle.fluid.dygraph.base import to_variable

                place = place = fluid.CUDAPlace(fluid.dygraph.ParallelEnv().dev_id)
                with fluid.dygraph.guard(place=place):
                    strategy=dygraph.prepare_context()
                    linear = Linear(1, 10, act="softmax")
                    adam = fluid.optimizer.AdamOptimizer()
                    linear = dygraph.DataParallel(linear, strategy)

                    x_data = np.random.random(size=[10, 1]).astype(np.float32)
                    data = to_variable(x_data)
                    hidden = linear(data)
                    avg_loss = fluid.layers.mean(hidden)
                    avg_loss = linear.scale_loss(avg_loss)
                    avg_loss.backward()

                    # collect the gradients of trainers.
                    linear.apply_collective_grads()

                    adam.minimize(avg_loss)
                    linear.clear_gradients()
C
chengduo 已提交
415 416
        """
        if not self._is_data_parallel_mode():
Y
Yan Xu 已提交
417 418
            return

419 420
        grad_var_set = set()
        grad_vars = []
Y
Yan Xu 已提交
421
        for param in self._layers.parameters():
C
chengduo 已提交
422
            # NOTE(zcd): The grad_ivar maybe no generated.
423 424
            if param.trainable and param._grad_ivar():
                g_var = param._grad_ivar()
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
                grad_vars.append(g_var)
                assert g_var not in grad_var_set
                grad_var_set.add(g_var)

        # FIXME(zcd): the type of the var should be LoDTensor, i.e
        # the gradients should be dense, otherwise, the following
        # logic should be updated.
        # 128 MB as a group
        mega_bytes = 128 * 1024 * 1024
        group_idx = 0
        memory_counter = 0
        grad_var_groups = OrderedDict()
        dtype = grad_vars[0].dtype
        for g_var in grad_vars:
            # Note: the dtype of the same group should be the same.
            bytes = np.prod(g_var.shape) * core.size_of_dtype(g_var.dtype)
            if memory_counter < mega_bytes and dtype == g_var.dtype:
                memory_counter += bytes
            else:
                memory_counter = bytes
                group_idx += 1
            grad_var_groups.setdefault(group_idx, []).append(g_var)

        coalesced_grads_and_vars = self._coalesce_tensors(grad_var_groups)

        for coalesced_grad, g_vars, g_shapes in coalesced_grads_and_vars:
            collective._allreduce(
                coalesced_grad, coalesced_grad, sync_mode=False)

        self._split_tensors(coalesced_grads_and_vars)
C
chengduo 已提交
455 456 457

    def _is_data_parallel_mode(self):
        return self._strategy.nranks > 1
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479

    def state_dict(self,
                   destination=None,
                   include_sublayers=True,
                   structured_name_prefix=""):
        '''
        Get all parameters of self._layers and its sub-layers. And set all the parameters into a dict

        Parameters:
            destination(dict, optional) : If provide, all the parameters will set to this dict . Default: None
            include_sublayers(bool, optional) : If true, also include the parameters from sublayers. Default: True
            structured_name_prefix(str, optional): If not empty str, all the key in state dict will start 
                                                 with structured_name_prefix

        Retruns:
            dict: a dict contains all the parameters of self._layers

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                with fluid.dygraph.guard():
480
                    strategy=fluid.dygraph.prepare_context()
481
                    emb = fluid.dygraph.Embedding([10, 10])
482
                    emb = fluid.dygraph.DataParallel(emb, strategy)
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513

                    state_dict = emb.state_dict()
                    fluid.save_dygraph( state_dict, "paddle_dy")

        '''

        return self._layers.state_dict(
            destination=destination,
            include_sublayers=include_sublayers,
            structured_name_prefix=structured_name_prefix)

    def set_dict(self,
                 stat_dict,
                 include_sublayers=True,
                 use_structured_name=True):
        '''
        Set parameters of self._layers from stat_dict. All the parameters of self._layers will be reset by the tensor in the stat_dict

        Parameters:
            state_dict(dict) : Dict contains all the parameters
            include_sublayers(bool, optional) : If true, also include the parameters from sublayers. Default: True
            use_structured_name(bool, optional) : If true, use structured name as key, otherwise, use parameter name as key. 
                                                  Default: True
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                with fluid.dygraph.guard():
514
                    strategy=fluid.dygraph.prepare_context()
515
                    emb = fluid.dygraph.Embedding([10, 10])
516
                    emb = fluid.dygraph.DataParallel(emb, strategy)
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553

                    state_dict = emb.state_dict()
                    fluid.save_dygraph( state_dict, "paddle_dy")
                    
                    para_state_dict, _ = fluid.load_dygraph( "paddle_dy")

                    emb.set_dict( para_state_dict )

        '''

        self._layers.set_dict(
            stat_dict,
            include_sublayers=include_sublayers,
            use_structured_name=use_structured_name)

    def load_dict(self,
                  stat_dict,
                  include_sublayers=True,
                  use_structured_name=True):
        '''
        Set parameters of self._layers from stat_dict. All the parameters of self._layers will be reset by the tensor in the stat_dict

        This api will be Deprecated. Please use set_dict

        Parameters:
            state_dict(dict) : Dict contains all the parameters
            include_sublayers(bool, optional) : If true, also include the parameters from sublayers. Default: True
            use_structured_name(bool, optional) : If true, use structured name as key, otherwise, use parameter name as key.
                                                  Default: True
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                with fluid.dygraph.guard():
554
                    strategy=fluid.dygraph.prepare_context()
555
                    emb = fluid.dygraph.Embedding([10, 10])
556
                    emb = fluid.dygraph.DataParallel(emb, strategy)
557 558 559 560 561 562 563 564 565 566 567 568 569 570

                    state_dict = emb.state_dict()
                    fluid.save_dygraph( state_dict, "paddle_dy")
                    
                    para_state_dict, _ = fluid.load_dygraph( "paddle_dy")

                    emb.load_dict( para_state_dict )

        '''

        self._layers.load_dict(
            stat_dict,
            include_sublayers=include_sublayers,
            use_structured_name=use_structured_name)