convolution.cu.h 23.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include <thrust/binary_search.h>
18 19 20 21 22 23 24 25
#include <thrust/execution_policy.h>
#include <thrust/remove.h>
#include <thrust/sort.h>
#include <thrust/unique.h>

#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/backends/gpu/gpu_info.h"
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
26
#include "paddle/phi/kernels/copy_kernel.h"
27
#include "paddle/phi/kernels/funcs/index_impl.cu.h"
Z
zhangkaihuo 已提交
28 29
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/primitive/compute_primitives.h"
30 31 32 33 34
#include "paddle/phi/kernels/sparse/convolution_kernel.h"

namespace phi {
namespace sparse {

Z
zhangkaihuo 已提交
35 36
using Dims4D = phi::funcs::sparse::Dims4D;

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
// TODO(zhangkaihuo): After the GatherCUDAKernel is migrated to phi, replace
// this kernel with phi::GatherCUDAKernel;
// Vectorization can be used to improve read and write bandwidth
/**
 * brief: gather data from params according to indices
 * params: the inputs
 * indices: the indices you want to gather
 * output: the outputs
 * index_size: the size of indices
 * slice_size: slice size corresponding to each index, here is the channel size
**/
template <typename T, typename IndexT = int>
__global__ void GatherKernel(const T* params,
                             const IndexT* indices,
                             T* output,
                             size_t index_size,
                             size_t slice_size) {
  CUDA_KERNEL_LOOP_TYPE(i, index_size * slice_size, int64_t) {
    int64_t indices_i = i / slice_size;
    int64_t slice_i = i - indices_i * slice_size;  // offset inside the slice
    IndexT gather_i = indices[indices_i];
    int64_t params_i = gather_i * slice_size + slice_i;
    *(output + i) = *(params + params_i);
  }
}

/**
 * brief: scatter add
 * input: the inputs
 * unique_value: refer to UpdateIndexKernel notes
 * out_index: the output feature index
 * non_zero_num: the number of output features
 * rulebook_len: the length of rulebook
 * channels: the output channel size
 * out: the outputs
**/
template <typename T>
__global__ void ScatterKernel(const T* input,
                              const int* unique_value,
                              const int* out_index,
                              const int non_zero_num,
                              const int rulebook_len,
                              const int channels,
Z
zhangkaihuo 已提交
80 81
                              T* out,
                              const bool subm = false) {
82 83 84 85 86 87 88 89 90 91
  int tid = threadIdx.x + blockIdx.x * blockDim.x;
  for (int i = tid; i < non_zero_num * channels; i += gridDim.x * blockDim.x) {
    int indices_i = i / channels;
    int channels_i = i - indices_i * channels;

    int start = unique_value[indices_i];
    int end = indices_i == non_zero_num - 1 ? rulebook_len
                                            : unique_value[indices_i + 1];
    // max(end-start) = kernel_size
    T sum = static_cast<T>(0);
Z
zhangkaihuo 已提交
92 93 94
    if (subm) {
      sum = out[indices_i * channels + channels_i];
    }
95 96 97 98 99 100 101 102
    for (int j = start; j < end; j++) {
      const int out_feature_i = out_index[j];
      sum += input[out_feature_i * channels + channels_i];
    }
    out[indices_i * channels + channels_i] = sum;
  }
}

103 104 105 106 107 108 109
template <typename Context, typename IntT = int>
inline IntT* SortedAndUniqueIndex(const Context& dev_ctx,
                                  const IntT* rulebook_ptr,
                                  const int len,
                                  DenseTensor* out_index,
                                  DenseTensor* unique_key,
                                  DenseTensor* unique_value) {
110 111 112 113 114
  phi::IndexKernel<int, kps::IdentityFunctor<int>>(
      dev_ctx, out_index, kps::IdentityFunctor<int>());
  phi::IndexKernel<int, kps::IdentityFunctor<int>>(
      dev_ctx, unique_value, kps::IdentityFunctor<int>());

115
  phi::backends::gpu::GpuMemcpyAsync(unique_key->data<IntT>(),
116
                                     rulebook_ptr,
117
                                     sizeof(IntT) * len,
118 119 120 121 122 123 124 125 126 127 128 129 130
#ifdef PADDLE_WITH_HIP
                                     hipMemcpyDeviceToDevice,
#else
                                     cudaMemcpyDeviceToDevice,
#endif
                                     dev_ctx.stream());
// compared with thrust::sort_by_key, thrust::merge_by_key may achieved higher
// performance, but thrust::merge_by_key limited by data size
#ifdef PADDLE_WITH_HIP
  thrust::sort_by_key(thrust::hip::par.on(dev_ctx.stream()),
#else
  thrust::sort_by_key(thrust::cuda::par.on(dev_ctx.stream()),
#endif
131 132
                      unique_key->data<IntT>(),
                      unique_key->data<IntT>() + len,
133 134 135
                      out_index->data<int>());

  // 4. unique
136
  thrust::pair<IntT*, int*> new_end =
137 138 139 140 141
#ifdef PADDLE_WITH_HIP
      thrust::unique_by_key(thrust::hip::par.on(dev_ctx.stream()),
#else
      thrust::unique_by_key(thrust::cuda::par.on(dev_ctx.stream()),
#endif
142 143
                            unique_key->data<IntT>(),
                            unique_key->data<IntT>() + len,
144 145 146 147
                            unique_value->data<int>());
  return new_end.first;
}

Z
zhangkaihuo 已提交
148 149 150 151 152 153 154 155 156 157 158
/**
 * @brief: update the out index and indices
 * unique_keys: save the index of the output feature list
 * unique_values: indiates the index of key before deduplication
 * out_indexs: indicates the position of the output index in the rulebook
 * rulebook_len: indicates the length of rulebook
 * out_dims: indicates the output dims
 * out_indices: the indices of output, out_indices = IndexToPoint(unique_keys)
 * rulebook_out_indexs: the output index in rulebook
**/
template <typename T>
159
__global__ void UpdateIndexKernel(const T* unique_keys,
Z
zhangkaihuo 已提交
160 161
                                  const int* unique_values,
                                  const int* out_indexs,
162
                                  const int64_t non_zero_num,
Z
zhangkaihuo 已提交
163 164 165 166 167 168
                                  const int rulebook_len,
                                  const Dims4D out_dims,
                                  T* out_indices,
                                  T* rulebook_out_indexs) {
  int tid = threadIdx.x + blockIdx.x * blockDim.x;
  for (int i = tid; i < non_zero_num; i += gridDim.x * blockDim.x) {
169 170
    const T index = unique_keys[i];
    T batch, x, y, z;
Z
zhangkaihuo 已提交
171 172 173 174 175 176 177 178 179 180 181 182
    phi::funcs::sparse::IndexToPoint<Dims4D>(
        index, out_dims, &batch, &x, &y, &z);
    // get out indices
    out_indices[i] = batch;
    out_indices[i + non_zero_num] = z;
    out_indices[i + non_zero_num * 2] = y;
    out_indices[i + non_zero_num * 3] = x;

    // update rulebook
    int start = unique_values[i];
    int end = i == non_zero_num - 1 ? rulebook_len : unique_values[i + 1];
    // max(end-start) = kernel_size
183
    for (T j = start; j < end; j++) {
Z
zhangkaihuo 已提交
184 185 186 187 188 189 190
      rulebook_out_indexs[out_indexs[j]] = i;
    }
  }
}

// brief: calculation the distance between start and end
template <typename T>
191
__global__ void DistanceKernel(const T* start, const T* end, T* distance) {
Z
zhangkaihuo 已提交
192 193 194 195 196
  if (threadIdx.x == 0) {
    *distance = end - start;
  }
}

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
template <typename IntT>
__global__ void UpdateOutIndexAndCounterAfterLowerBound(
    const IntT* x_indexs,
    const IntT* bound_out,
    const int rulebook_len,
    const int kernel_size,
    const int64_t non_zero_num,
    IntT* rulebook_ptr,
    IntT* out_indexs,
    int* counter_ptr) {
  extern __shared__ int cache_count[];
  for (int i = threadIdx.x; i < kernel_size; i += blockDim.x) {
    cache_count[i] = 0;
  }
  __syncthreads();

  CUDA_KERNEL_LOOP_TYPE(i, rulebook_len, int64_t) {
    int j = bound_out[i];
    if (j >= 0 && j < non_zero_num && out_indexs[i] == x_indexs[j]) {
      out_indexs[i] = j;
    } else {
      // mask this position will be remove
      int kernel_index = rulebook_ptr[i];
      rulebook_ptr[i + rulebook_len] = -1;
      rulebook_ptr[i + 2 * rulebook_len] = -1;
      rulebook_ptr[i] = -1;
      atomicAdd(&cache_count[kernel_index], 1);
    }
  }
  __syncthreads();

  for (int i = threadIdx.x; i < kernel_size; i += blockDim.x) {
    atomicSub(&counter_ptr[i], cache_count[i]);
  }
}

Z
zhangkaihuo 已提交
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
/**
 * @brief product rulebook
 * for input_i in x_indices:
 *   if input_i participate in the convolution calculation:
 *       infer the output_i by input_i and kernel_i
 *       save output_i
 *
 * x_indices: the indices of input features
 * x_dims: the input dims
 * kernel_dims: the kernel dims
 * out_dims: the output dims
 * non_zero_num: the number of input features
 * rulebook: the rulebook to save the kernel index, input index and output index
 * counter: save the number of times each location in the kernel participates in
 *the caculation
**/
template <typename T>
__global__ void ProductRuleBookKernel(const T* x_indices,
                                      const Dims4D x_dims,
                                      const Dims4D kernel_dims,
                                      const Dims4D out_dims,
                                      const int64_t non_zero_num,
                                      const Dims4D paddings,
                                      const Dims4D dilations,
                                      const Dims4D strides,
                                      const bool subm,
                                      T* rulebook,
                                      int* counter,
261
                                      T* in_indexs) {
Z
zhangkaihuo 已提交
262 263 264 265 266 267 268 269 270 271 272
  int tid = threadIdx.x + blockIdx.x * blockDim.x;
  extern __shared__ int counter_buf[];  // kernel_size
  const int kernel_size = kernel_dims[3] * kernel_dims[2] * kernel_dims[1];
  const int offset = kernel_size * non_zero_num;
  for (int i = threadIdx.x; i < kernel_size; i += blockDim.x) {
    counter_buf[i] = 0;
  }
  __syncthreads();

  for (int i = tid; i < non_zero_num; i += gridDim.x * blockDim.x) {
    int kernel_index = 0;
273 274 275 276
    T batch = x_indices[i];
    T in_z = x_indices[i + non_zero_num];
    T in_y = x_indices[i + 2 * non_zero_num];
    T in_x = x_indices[i + 3 * non_zero_num];
Z
zhangkaihuo 已提交
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
    if (subm) {
      in_indexs[i] = PointToIndex(batch, in_x, in_y, in_z, x_dims);
    }
    for (int kz = 0; kz < kernel_dims[1]; kz++) {
      for (int ky = 0; ky < kernel_dims[2]; ky++) {
        for (int kx = 0; kx < kernel_dims[3]; kx++) {
          int in_i = -1, out_index = -1, kernel_i = -1;
          if (phi::funcs::sparse::Check(x_dims,
                                        kernel_dims,
                                        paddings,
                                        dilations,
                                        strides,
                                        in_x,
                                        in_y,
                                        in_z,
                                        kx,
                                        ky,
                                        kz)) {
295 296 297
            T out_z = (in_z + paddings[1] - kz * dilations[1]) / strides[1];
            T out_y = (in_y + paddings[2] - ky * dilations[2]) / strides[2];
            T out_x = (in_x + paddings[3] - kx * dilations[3]) / strides[3];
Z
zhangkaihuo 已提交
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
            in_i = i;
            out_index = phi::funcs::sparse::PointToIndex<Dims4D>(
                batch, out_x, out_y, out_z, out_dims);
            atomicAdd(&counter_buf[kernel_index], 1);
            kernel_i = kernel_index;
          }
          rulebook[kernel_index * non_zero_num + i] = kernel_i;
          rulebook[kernel_index * non_zero_num + offset + i] = in_i;
          rulebook[kernel_index * non_zero_num + offset * 2 + i] = out_index;
          ++kernel_index;
        }
      }
    }
  }
  __syncthreads();
  for (int i = threadIdx.x; i < kernel_size; i += blockDim.x) {
    atomicAdd(&counter[i], counter_buf[i]);
  }
}

// the basic algorithm can refer to convolution_kernel.cc or
// the second paper
// example:
// 1. the rulebook:
//  the kernel_index:                       0, 0, 0, 1, 1, 1, 2, 2, ....
//  the out_index(key):                     20, 30, 33, 30, 33, 20, 25
// 2. mark the index of out_index(value):   0, 1, 2, 3, 4, 5, 6, ....
// 3. sorted the (key, value)
// 4. unique the (key, value):
//  unique_key:     20, 25, 30, 33
//  unique_values:  0, 2, 3, 5
//  the index of unique_values is: 0, 1, 2, 3
// 5. update the out_index by unique_key, uniqe_value and the index of
// unique_value:
//  the new out_index: 0, 2, 3, 2, 3, 0, 1
333
template <typename T, typename Context, typename IntT = int>
Z
zhangkaihuo 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
int ProductRuleBook(const Context& dev_ctx,
                    const SparseCooTensor& x,
                    const std::vector<int>& kernel_sizes,
                    const std::vector<int>& paddings,
                    const std::vector<int>& dilations,
                    const std::vector<int>& strides,
                    const DDim& out_dims,
                    const bool subm,
                    DenseTensor* rulebook,
                    DenseTensor* counter_per_kernel,
                    DenseTensor* offsets_per_kernel,
                    DenseTensor* out_index,
                    DenseTensor* unique_value,
                    SparseCooTensor* out,
                    std::vector<int>* h_counter,
                    std::vector<int>* h_offsets) {
350
  auto indices_dtype = paddle::experimental::CppTypeToDataType<IntT>::Type();
Z
zhangkaihuo 已提交
351 352
  const int64_t non_zero_num = x.nnz();
  const auto& non_zero_indices = x.non_zero_indices();
353
  const IntT* indices_ptr = non_zero_indices.data<IntT>();
Z
zhangkaihuo 已提交
354
  DenseTensor in_indexs = phi::Empty<Context>(
355
      dev_ctx, DenseTensorMeta(indices_dtype, {x.nnz()}, DataLayout::NCHW));
Z
zhangkaihuo 已提交
356 357 358 359 360
  int* counter_ptr = counter_per_kernel->data<int>();
  int* offsets_ptr = offsets_per_kernel->data<int>();
  int kernel_size = kernel_sizes[0] * kernel_sizes[1] * kernel_sizes[2];
  const int rulebook_rows = 3;
  const int rulebook_cols = kernel_size * non_zero_num;
361
  DenseTensorMeta rulebook_meta(
362 363 364
      indices_dtype, {rulebook_rows, rulebook_cols}, DataLayout::NCHW);
  *rulebook = phi::Empty(dev_ctx, std::move(rulebook_meta));
  IntT* rulebook_ptr = rulebook->data<IntT>();
Z
zhangkaihuo 已提交
365 366 367 368 369 370 371 372 373 374 375 376 377 378

  const auto x_dims = x.dims();
  Dims4D d_x_dims(x_dims[0], x_dims[3], x_dims[2], x_dims[1]);
  Dims4D d_kernel_dims(1, kernel_sizes[2], kernel_sizes[1], kernel_sizes[0]);
  Dims4D d_out_dims(out_dims[0], out_dims[3], out_dims[2], out_dims[1]);
  Dims4D d_paddings(1, paddings[2], paddings[1], paddings[0]);
  Dims4D d_strides(1, strides[2], strides[1], strides[0]);
  Dims4D d_dilations(1, dilations[2], dilations[1], dilations[0]);
  // 1. product rule book
  phi::funcs::SetConstant<Context, int> set_zero;
  set_zero(dev_ctx, counter_per_kernel, 0);
  auto config =
      phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, non_zero_num, 1);

379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
  ProductRuleBookKernel<IntT><<<config.block_per_grid.x,
                                config.thread_per_block.x,
                                kernel_size * sizeof(int),
                                dev_ctx.stream()>>>(indices_ptr,
                                                    d_x_dims,
                                                    d_kernel_dims,
                                                    d_out_dims,
                                                    non_zero_num,
                                                    d_paddings,
                                                    d_dilations,
                                                    d_strides,
                                                    subm,
                                                    rulebook_ptr,
                                                    counter_ptr,
                                                    in_indexs.data<IntT>());
Z
zhangkaihuo 已提交
394 395 396

// 2. remove -1
#ifdef PADDLE_WITH_HIP
397
  IntT* last = thrust::remove(thrust::hip::par.on(dev_ctx.stream()),
Z
zhangkaihuo 已提交
398
#else
399
  IntT* last = thrust::remove(thrust::cuda::par.on(dev_ctx.stream()),
Z
zhangkaihuo 已提交
400
#endif
401 402 403
                              rulebook_ptr,
                              rulebook_ptr + rulebook_rows * rulebook_cols,
                              -1);
Z
zhangkaihuo 已提交
404

405
  DistanceKernel<IntT><<<1, 1, 0, dev_ctx.stream()>>>(
Z
zhangkaihuo 已提交
406
      rulebook_ptr, last, rulebook_ptr + 3 * kernel_size * non_zero_num - 1);
407
  IntT rulebook_len = 0;
Z
zhangkaihuo 已提交
408 409 410
  phi::backends::gpu::GpuMemcpyAsync(
      &rulebook_len,
      rulebook_ptr + 3 * kernel_size * non_zero_num - 1,
411
      sizeof(IntT),
Z
zhangkaihuo 已提交
412 413 414 415 416 417 418
#ifdef PADDLE_WITH_HIP
      hipMemcpyDeviceToHost,
#else
      cudaMemcpyDeviceToHost,
#endif
      dev_ctx.stream());
  dev_ctx.Wait();
419
  rulebook_len /= 3;
Z
zhangkaihuo 已提交
420 421 422 423 424 425 426 427

  if (subm) {
    // At present, hashtable is not used to map the input and output indexes.
    // At present, the intermediate output index is generated by normal
    // convolution,
    // and then the intermediate output index is subtracted from the input index
    // to obain the rulebook.

428 429 430 431 432 433 434 435
    // call lower_bound to get the real index of out_index
    const IntT* in_indexs_ptr = in_indexs.data<IntT>();
    IntT* out_indexs_ptr = rulebook_ptr + 2 * rulebook_len;
    DenseTensor bound = phi::Empty(
        dev_ctx,
        DenseTensorMeta(
            indices_dtype, {static_cast<int>(rulebook_len)}, DataLayout::NCHW));
    IntT* bound_ptr = bound.data<IntT>();
Z
zhangkaihuo 已提交
436
#ifdef PADDLE_WITH_HIP
437
    thrust::lower_bound(thrust::hip::par.on(dev_ctx.stream()),
Z
zhangkaihuo 已提交
438
#else
439
    thrust::lower_bound(thrust::cuda::par.on(dev_ctx.stream()),
Z
zhangkaihuo 已提交
440
#endif
441 442 443 444 445 446 447 448 449 450 451 452 453 454
                        in_indexs_ptr,
                        in_indexs_ptr + in_indexs.numel(),
                        out_indexs_ptr,
                        out_indexs_ptr + rulebook_len,
                        bound_ptr);

    config = phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, rulebook_len, 1);

    UpdateOutIndexAndCounterAfterLowerBound<<<config.block_per_grid,
                                              config.thread_per_block,
                                              kernel_size * sizeof(int),
                                              dev_ctx.stream()>>>(
        in_indexs_ptr,
        bound.data<IntT>(),
Z
zhangkaihuo 已提交
455 456
        rulebook_len,
        kernel_size,
457
        x.nnz(),
Z
zhangkaihuo 已提交
458
        rulebook_ptr,
459
        out_indexs_ptr,
Z
zhangkaihuo 已提交
460
        counter_ptr);
461

Z
zhangkaihuo 已提交
462 463
// remove -1
#ifdef PADDLE_WITH_HIP
464
    IntT* last = thrust::remove(thrust::hip::par.on(dev_ctx.stream()),
Z
zhangkaihuo 已提交
465
#else
466
    IntT* last = thrust::remove(thrust::cuda::par.on(dev_ctx.stream()),
Z
zhangkaihuo 已提交
467
#endif
468 469 470 471
                                rulebook_ptr,
                                rulebook_ptr + 3 * rulebook_len,
                                -1);
    DistanceKernel<IntT><<<1, 1, 0, dev_ctx.stream()>>>(
472
        rulebook_ptr, last, bound_ptr);
Z
zhangkaihuo 已提交
473
    phi::backends::gpu::GpuMemcpyAsync(&rulebook_len,
474
                                       bound_ptr,
475
                                       sizeof(IntT),
Z
zhangkaihuo 已提交
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
#ifdef PADDLE_WITH_HIP
                                       hipMemcpyDeviceToHost,
#else
                                       cudaMemcpyDeviceToHost,
#endif
                                       dev_ctx.stream());
    dev_ctx.Wait();
    rulebook_len /= 3;
  }

#ifdef PADDLE_WITH_HIP
  thrust::exclusive_scan(thrust::hip::par.on(dev_ctx.stream()),
#else
  thrust::exclusive_scan(thrust::cuda::par.on(dev_ctx.stream()),
#endif
                         counter_ptr,
                         counter_ptr + kernel_size,
                         offsets_ptr);

  phi::backends::gpu::GpuMemcpyAsync(&(*h_counter)[0],
                                     counter_ptr,
                                     kernel_size * sizeof(int),
498
#ifdef PADDLE_WITH_HIP
Z
zhangkaihuo 已提交
499 500 501
                                     hipMemcpyDeviceToHost,
#else
                                     cudaMemcpyDeviceToHost,
502
#endif
Z
zhangkaihuo 已提交
503
                                     dev_ctx.stream());
504

Z
zhangkaihuo 已提交
505 506 507
  phi::backends::gpu::GpuMemcpyAsync(&(*h_offsets)[0],
                                     offsets_ptr,
                                     kernel_size * sizeof(int),
508 509 510
#ifdef PADDLE_WITH_HIP
                                     hipMemcpyDeviceToHost,
#else
Z
zhangkaihuo 已提交
511 512
                                     cudaMemcpyDeviceToHost,
#endif
513 514
                                     dev_ctx.stream());

515
  rulebook->Resize({rulebook_rows, static_cast<int>(rulebook_len)});
Z
zhangkaihuo 已提交
516

517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
  if (!subm) {
    // 3. sorted or merge the out index
    out_index->ResizeAndAllocate({static_cast<int>(rulebook_len)});
    unique_value->ResizeAndAllocate({static_cast<int>(rulebook_len)});
    DenseTensor unique_key = phi::Empty(
        dev_ctx,
        DenseTensorMeta(
            indices_dtype, {static_cast<int>(rulebook_len)}, DataLayout::NCHW));
    int* out_index_ptr = out_index->data<int>();
    int* unique_value_ptr = unique_value->data<int>();
    IntT* unique_key_ptr = unique_key.data<IntT>();

    IntT* new_end =
        SortedAndUniqueIndex<Context, IntT>(dev_ctx,
                                            rulebook_ptr + 2 * rulebook_len,
                                            rulebook_len,
                                            out_index,
                                            &unique_key,
                                            unique_value);
    // thrust::distance doesn't support stream parameters
    // const int out_non_zero_num = thrust::distance(unique_key_ptr,
    // new_end.first);
    DistanceKernel<IntT><<<1, 1, 0, dev_ctx.stream()>>>(
        unique_key_ptr,
        new_end,
        rulebook_ptr + rulebook_rows * rulebook_cols - 1);
    IntT out_non_zero_num = 0;
Z
zhangkaihuo 已提交
544
#ifdef PADDLE_WITH_HIP
545 546 547 548 549 550
    phi::backends::gpu::GpuMemcpyAsync(
        &out_non_zero_num,
        rulebook_ptr + rulebook_rows * rulebook_cols - 1,
        sizeof(IntT),
        hipMemcpyDeviceToHost,
        dev_ctx.stream());
Z
zhangkaihuo 已提交
551
#else
552 553 554 555 556 557
    phi::backends::gpu::GpuMemcpyAsync(
        &out_non_zero_num,
        rulebook_ptr + rulebook_rows * rulebook_cols - 1,
        sizeof(IntT),
        cudaMemcpyDeviceToHost,
        dev_ctx.stream());
Z
zhangkaihuo 已提交
558
#endif
559
    dev_ctx.Wait();
Z
zhangkaihuo 已提交
560

561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
    // 5. update out_indices and rulebook by unique_value_ptr
    const int64_t sparse_dim = 4;
    DenseTensorMeta indices_meta(
        indices_dtype, {sparse_dim, out_non_zero_num}, DataLayout::NCHW);
    DenseTensorMeta values_meta(x.dtype(),
                                {out_non_zero_num, kernel_sizes[4]},
                                x.non_zero_elements().layout());
    phi::DenseTensor out_indices = phi::Empty(dev_ctx, std::move(indices_meta));
    phi::DenseTensor out_values = phi::Empty(dev_ctx, std::move(values_meta));

    IntT* out_indices_ptr = out_indices.data<IntT>();

    config =
        phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, out_non_zero_num, 1);
    UpdateIndexKernel<IntT><<<config.block_per_grid.x,
                              config.thread_per_block.x,
                              0,
                              dev_ctx.stream()>>>(
        unique_key_ptr,
        unique_value_ptr,
        out_index_ptr,
        out_non_zero_num,
        rulebook_len,
        d_out_dims,
        out_indices_ptr,
        rulebook_ptr + 2 * rulebook_len);
    out->SetMember(out_indices, out_values, out_dims, true);
  } else {
    DenseTensor out_indices =
        phi::EmptyLike<IntT>(dev_ctx, x.non_zero_indices());
    DenseTensor out_values =
        phi::Empty(dev_ctx,
                   DenseTensorMeta(x.dtype(),
                                   {x.nnz(), kernel_sizes[4]},
                                   x.non_zero_elements().layout()));
    phi::Copy(
        dev_ctx, x.non_zero_indices(), dev_ctx.GetPlace(), false, &out_indices);
    out->SetMember(out_indices, out_values, out_dims, true);
  }
Z
zhangkaihuo 已提交
600 601 602
  return rulebook_len;
}

603 604
}  // namespace sparse
}  // namespace phi