multihead_matmul_op.cu 8.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <cuda_runtime.h>
#include <paddle/fluid/platform/device_context.h>
#include <algorithm>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/malloc.h"
20
#include "paddle/fluid/operators/math/bert_encoder_functor.h"
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
#include "paddle/fluid/operators/math/blas.h"

namespace paddle {
namespace operators {

template <typename T>
__global__ void transpose(T *src, T *dst, const int batch_size,
                          const int seq_len, const int head_num,
                          const int size_per_head) {
  int batch_id = blockIdx.x / (head_num * seq_len);
  int seq_id = blockIdx.x % seq_len;
  int head_id = (blockIdx.x % (head_num * seq_len)) / seq_len;
  dst[batch_id * (head_num * seq_len * size_per_head) +
      seq_id * head_num * size_per_head + head_id * size_per_head +
      threadIdx.x] = src[blockIdx.x * size_per_head + threadIdx.x];
}

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
template <typename T>
inline __device__ T add_func(T a, T b);

template <>
__device__ float add_func<float>(float a, float b) {
  return a + b;
}

template <>
__device__ float2 add_func<float2>(float2 a, float2 b) {
  float2 c;
  c.x = a.x + b.x;
  c.y = a.y + b.y;
  return c;
}

template <>
__device__ float4 add_func<float4>(float4 a, float4 b) {
  float4 c;
  c.x = a.x + b.x;
  c.y = a.y + b.y;
  c.z = a.z + b.z;
  c.w = a.w + b.w;
  return c;
62 63 64
}

template <typename T>
65 66
__global__ void TransposeQkvKernel(const int H, const T *input, const T *bias,
                                   T *output) {
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
  // Input: BxSx3xNxH
  // Bias: 3xSxB
  // Output: 3xBxNxSxH
  int n = threadIdx.y;
  int s = blockIdx.x;
  int b = blockIdx.y;
  int m = blockIdx.z;

  const int N = blockDim.y;
  const int S = gridDim.x;
  const int B = gridDim.y;

  const int NH = N * H;
  const int NHS = NH * S;
  const int in_offset = n * H + m * NH + s * 3 * NH + b * NHS * 3;
  const int bias_offset = m * NH + n * H;
  const int out_offset = s * H + n * S * H + b * NHS + m * NHS * B;

  const int i = threadIdx.x;
  output[out_offset + i] =
      add_func(input[in_offset + i], bias[bias_offset + i]);
}
89

90 91 92 93
void TransQKVWithBias(const int batch, const int seq_len, const int head_size,
                      const int head_num, const float *input, const float *bias,
                      float *output, cudaStream_t stream) {
  // BxSx3xNxH + 3xNxH -> 3xBxNxSxH
Z
Zhaolong Xing 已提交
94
  int scratch_size = batch * head_num * seq_len * seq_len;
95
  const dim3 grid(seq_len, batch, 3);
Z
Zhaolong Xing 已提交
96 97
  // scratch % 4 == 0 to ensure the alignment
  if (head_size % 4 == 0 && scratch_size % 4 == 0) {
98 99 100 101 102 103 104 105 106 107 108
    const int h = head_size / 4;
    const float4 *input4 = reinterpret_cast<const float4 *>(input);
    const float4 *bias4 = reinterpret_cast<const float4 *>(bias);
    float4 *output4 = reinterpret_cast<float4 *>(output);
    const dim3 block(h, head_num, 1);

    // limit h * head_num to max block size(1024).
    PADDLE_ENFORCE_LE(h * head_num, 1024,
                      platform::errors::InvalidArgument(
                          "head_num (%d) * head_size (%d) should <= %d",
                          head_num, head_size, 1024 * 4));
109 110
    TransposeQkvKernel<float4><<<grid, block, 0, stream>>>(h, input4, bias4,
                                                           output4);
Z
Zhaolong Xing 已提交
111
  } else if (head_size % 2 == 0 && scratch_size % 2 == 0) {
112 113 114 115 116 117 118 119 120 121
    const int h = head_size / 2;
    const float2 *input2 = reinterpret_cast<const float2 *>(input);
    const float2 *bias2 = reinterpret_cast<const float2 *>(bias);
    float2 *output2 = reinterpret_cast<float2 *>(output);
    const dim3 block(h, head_num, 1);
    // limit h * head_num to max block size(1024).
    PADDLE_ENFORCE_LE(h * head_num, 1024,
                      platform::errors::InvalidArgument(
                          "head_num (%d) * head_size (%d) should <= %d",
                          head_num, head_size, 1024 * 2));
122 123
    TransposeQkvKernel<float2><<<grid, block, 0, stream>>>(h, input2, bias2,
                                                           output2);
124 125 126 127 128 129 130
  } else {
    const dim3 block(head_size, head_num, 1);
    // limit head_size * head_num to max block size(1024).
    PADDLE_ENFORCE_LE(head_size * head_num, 1024,
                      platform::errors::InvalidArgument(
                          "head_num (%d) * head_size (%d) should <= %d",
                          head_num, head_size, 1024));
131 132
    TransposeQkvKernel<float><<<grid, block, 0, stream>>>(head_size, input,
                                                          bias, output);
133 134
  }
}
135 136

template <typename DeviceContext, typename T>
137
class MultiHeadMatMulV2Kernel : public framework::OpKernel<T> {
138 139
 public:
  void Compute(const framework::ExecutionContext &context) const override {
140 141 142 143
    using Tensor = framework::Tensor;
    auto *input = context.Input<framework::Tensor>("Input");
    auto *w = context.Input<framework::Tensor>("W");
    auto *bias = context.Input<framework::Tensor>("Bias");
144 145
    auto &bias_qk = GET_DATA_SAFELY(context.Input<framework::Tensor>("BiasQK"),
                                    "Input", "BiasQK", "MultiHeadMatMulV2");
146

147 148 149
    auto *input_d = input->data<T>();
    auto *w_d = w->data<T>();
    auto *bias_d = bias->data<T>();
150
    auto *bias_qk_d = bias_qk.template data<T>();
151 152 153 154 155
    T scale = static_cast<T>(context.Attr<float>("alpha"));

    int head_number = context.Attr<int>("head_number");
    // compute q*k with eltadd
    auto &device_ctx = context.template device_context<DeviceContext>();
156 157 158 159 160 161 162 163 164 165 166
    // should be (B * S * hidden)
    auto input_dims = input->dims();
    // shouble be (hidden * 3 * all_head_size)
    auto w_dims = w->dims();
    int batch = input_dims[0];
    int seq_len = input_dims[1];
    int hidden = input_dims[2];

    int all_head_size = w_dims[2];
    int head_size = all_head_size / head_number;

167 168 169 170
    auto *out = context.Output<framework::Tensor>("Out");
    out->Resize({batch, seq_len, all_head_size});
    auto *output_d = out->mutable_data<T>(context.GetPlace());

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
    // (B*S, hidden)
    const Tensor input_matrix =
        framework::ReshapeToMatrix(*input, 2 /*x_num_col_dims */);
    // (hidden, 3 * all_head_size)
    const Tensor w_matrix =
        framework::ReshapeToMatrix(*w, 1 /*y_num_col_dims*/);

    Tensor temp_out_tensor;
    auto temp_out_dims =
        framework::make_ddim({batch, seq_len, 3, head_number, head_size});
    temp_out_tensor.Resize({batch * seq_len, framework::product(temp_out_dims) /
                                                 (batch * seq_len)});
    auto *temp_out_data = temp_out_tensor.mutable_data<T>(context.GetPlace());

    // (B * S, hidden) * (hidden, 3 * N * H) -> (B * S * 3 * N * H)
    auto blas = math::GetBlas<platform::CUDADeviceContext, T>(device_ctx);
    blas.MatMul(input_matrix, w_matrix, &temp_out_tensor);

    // temp_out_tensor.Resize(temp_out_dims);

    Tensor multihead_temp_tensor;
    // B * head_number * S * S * 1 + B * S * 3 * N * H
    int scratch_size = batch * head_number * seq_len * seq_len * 1;
    multihead_temp_tensor.Resize({scratch_size + temp_out_tensor.numel()});
    auto *multihead_temp_data =
        multihead_temp_tensor.mutable_data<T>(context.GetPlace());
    auto *qkptr = multihead_temp_data;
    auto *tptr = multihead_temp_data + scratch_size;

    auto stream = device_ctx.stream();
    // Do the transpose with bias.
    // BxSx3xNxH => tptr: 3xBxNxSxH.
    TransQKVWithBias(batch, seq_len, head_size, head_number, temp_out_data,
                     bias_d, tptr, stream);

206 207 208
    math::MultiHeadGPUComputeFunctor<T> multihead_compute_func;
    multihead_compute_func(device_ctx, batch, seq_len, head_number, head_size,
                           qkptr, bias_qk_d, tptr, scale, T(0.0));
209 210 211 212 213

    int grid = batch * head_number * seq_len;
    int block = head_size;
    transpose<T><<<grid, block, 0, stream>>>(tptr, output_d, batch, seq_len,
                                             head_number, head_size);
214 215 216 217 218 219 220 221 222
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
    multihead_matmul,
223
    ops::MultiHeadMatMulV2Kernel<paddle::platform::CUDADeviceContext, float>);