test_multiprocess_dataloader_dataset.py 14.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division

import unittest
import numpy as np

import paddle
import paddle.fluid as fluid
22
from paddle.io import Dataset, IterableDataset, TensorDataset, \
23
        ComposeDataset, ChainDataset, DataLoader, random_split, Subset
24

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
IMAGE_SIZE = 32


class RandomDataset(Dataset):
    def __init__(self, sample_num):
        self.sample_num = sample_num

    def __len__(self):
        return self.sample_num

    def __getitem__(self, idx):
        np.random.seed(idx)
        image = np.random.random([IMAGE_SIZE]).astype('float32')
        label = np.random.randint(0, 9, (1, )).astype('int64')
        return image, label


class RandomIterableDataset(IterableDataset):
    def __init__(self, sample_num):
        self.sample_num = sample_num

    def __iter__(self):
        for i in range(self.sample_num):
            np.random.seed(i)
            image = np.random.random([IMAGE_SIZE]).astype('float32')
            label = np.random.randint(0, 9, (1, )).astype('int64')
            yield image, label

53 54 55

class TestTensorDataset(unittest.TestCase):
    def run_main(self, num_workers, places):
56 57 58
        paddle.static.default_startup_program().random_seed = 1
        paddle.static.default_main_program().random_seed = 1
        place = paddle.CPUPlace()
59 60
        with fluid.dygraph.guard(place):
            input_np = np.random.random([16, 3, 4]).astype('float32')
61
            input = paddle.to_tensor(input_np)
62
            label_np = np.random.random([16, 1]).astype('int32')
63
            label = paddle.to_tensor(label_np)
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84

            dataset = TensorDataset([input, label])
            assert len(dataset) == 16
            dataloader = DataLoader(
                dataset,
                places=place,
                num_workers=num_workers,
                batch_size=1,
                drop_last=True)

            for i, (input, label) in enumerate(dataloader()):
                assert len(input) == 1
                assert len(label) == 1
                assert input.shape == [1, 3, 4]
                assert label.shape == [1, 1]
                assert isinstance(input, paddle.Tensor)
                assert isinstance(label, paddle.Tensor)
                assert np.allclose(input.numpy(), input_np[i])
                assert np.allclose(label.numpy(), label_np[i])

    def test_main(self):
85 86 87
        places = [paddle.CPUPlace()]
        if paddle.is_compiled_with_cuda():
            places.append(paddle.CUDAPlace(0))
88
        for p in places:
89 90 91 92 93
            self.run_main(num_workers=0, places=p)


class TestComposeDataset(unittest.TestCase):
    def test_main(self):
94 95
        paddle.static.default_startup_program().random_seed = 1
        paddle.static.default_main_program().random_seed = 1
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

        dataset1 = RandomDataset(10)
        dataset2 = RandomDataset(10)
        dataset = ComposeDataset([dataset1, dataset2])
        assert len(dataset) == 10

        for i in range(len(dataset)):
            input1, label1, input2, label2 = dataset[i]
            input1_t, label1_t = dataset1[i]
            input2_t, label2_t = dataset2[i]
            assert np.allclose(input1, input1_t)
            assert np.allclose(label1, label1_t)
            assert np.allclose(input2, input2_t)
            assert np.allclose(label2, label2_t)


112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
class TestRandomSplitApi(unittest.TestCase):
    def test_main(self):
        paddle.static.default_startup_program().random_seed = 1
        paddle.static.default_main_program().random_seed = 1

        dataset1, dataset2 = paddle.io.random_split(range(5), [1, 4])

        self.assertTrue(len(dataset1) == 1)
        self.assertTrue(len(dataset2) == 4)

        elements_list = list(range(5))

        for _, val in enumerate(dataset1):
            elements_list.remove(val)

        for _, val in enumerate(dataset2):
            elements_list.remove(val)

        self.assertTrue(len(elements_list) == 0)


class TestRandomSplitError(unittest.TestCase):
    def test_errors(self):
        paddle.static.default_startup_program().random_seed = 1
        paddle.static.default_main_program().random_seed = 1

        self.assertRaises(ValueError, paddle.io.random_split, range(5), [3, 8])
        self.assertRaises(ValueError, paddle.io.random_split, range(5), [8])
        self.assertRaises(ValueError, paddle.io.random_split, range(5), [])


class TestSubsetDataset(unittest.TestCase):
    def run_main(self, num_workers, places):
        paddle.static.default_startup_program().random_seed = 1
        paddle.static.default_main_program().random_seed = 1

        input_np = np.random.random([5, 3, 4]).astype('float32')
        input = paddle.to_tensor(input_np)
        label_np = np.random.random([5, 1]).astype('int32')
        label = paddle.to_tensor(label_np)

        dataset = TensorDataset([input, label])
        even_subset = paddle.io.Subset(dataset, [0, 2, 4])
        odd_subset = paddle.io.Subset(dataset, [1, 3])

        assert len(dataset) == 5

        def prepare_dataloader(dataset):
            return DataLoader(
                dataset,
                places=places,
                num_workers=num_workers,
                batch_size=1,
                drop_last=True)

        dataloader = prepare_dataloader(dataset)
        dataloader_even = prepare_dataloader(even_subset)
        dataloader_odd = prepare_dataloader(odd_subset)

        def assert_basic(input, label):
            assert len(input) == 1
            assert len(label) == 1
            assert input.shape == [1, 3, 4]
            assert label.shape == [1, 1]
            assert isinstance(input, paddle.Tensor)
            assert isinstance(label, paddle.Tensor)

        elements_list = list()
        for _, (input, label) in enumerate(dataloader()):
            assert_basic(input, label)
            elements_list.append(label)

        for _, (input, label) in enumerate(dataloader_even()):
            assert_basic(input, label)
            elements_list.remove(label)

        odd_list = list()
        for _, (input, label) in enumerate(dataloader_odd()):
            assert_basic(input, label)
            odd_list.append(label)

        self.assertEqual(odd_list, elements_list)

    def test_main(self):
        paddle.static.default_startup_program().random_seed = 1
        paddle.static.default_main_program().random_seed = 1

        places = [paddle.CPUPlace()]
        if paddle.is_compiled_with_cuda():
            places.append(paddle.CUDAPlace(0))
        for p in places:
            self.run_main(num_workers=0, places=p)


206 207
class TestChainDataset(unittest.TestCase):
    def run_main(self, num_workers, places):
208 209
        paddle.static.default_startup_program().random_seed = 1
        paddle.static.default_main_program().random_seed = 1
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230

        dataset1 = RandomIterableDataset(10)
        dataset2 = RandomIterableDataset(10)
        dataset = ChainDataset([dataset1, dataset2])

        samples = []
        for data in iter(dataset):
            samples.append(data)
        assert len(samples) == 20

        idx = 0
        for image, label in iter(dataset1):
            assert np.allclose(image, samples[idx][0])
            assert np.allclose(label, samples[idx][1])
            idx += 1
        for image, label in iter(dataset2):
            assert np.allclose(image, samples[idx][0])
            assert np.allclose(label, samples[idx][1])
            idx += 1

    def test_main(self):
231 232 233
        places = [paddle.CPUPlace()]
        if paddle.is_compiled_with_cuda():
            places.append(paddle.CUDAPlace(0))
234
        for p in places:
235
            self.run_main(num_workers=0, places=p)
236 237


238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
class NumpyMixTensorDataset(Dataset):
    def __init__(self, sample_num):
        self.sample_num = sample_num

    def __len__(self):
        return self.sample_num

    def __getitem__(self, idx):
        np.random.seed(idx)
        image = np.random.random([IMAGE_SIZE]).astype('float32')
        label = np.random.randint(0, 9, (1, )).astype('int64')
        return paddle.to_tensor(image, place=paddle.CPUPlace()), label


class TestNumpyMixTensorDataset(TestTensorDataset):
    def run_main(self, num_workers, places):
        paddle.static.default_startup_program().random_seed = 1
        paddle.static.default_main_program().random_seed = 1
        place = paddle.CPUPlace()
        with fluid.dygraph.guard(place):
            dataset = NumpyMixTensorDataset(16)
            assert len(dataset) == 16
            dataloader = DataLoader(
                dataset,
                places=place,
                num_workers=num_workers,
                batch_size=1,
                drop_last=True)

            for i, (input, label) in enumerate(dataloader()):
                assert len(input) == 1
                assert len(label) == 1
                assert input.shape == [1, IMAGE_SIZE]
                assert label.shape == [1, 1]
                assert isinstance(input, paddle.Tensor)
                assert isinstance(label, paddle.Tensor)


276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
class ComplextDataset(Dataset):
    def __init__(self, sample_num):
        self.sample_num = sample_num

    def __len__(self):
        return self.sample_num

    def __getitem__(self, idx):
        return (3.1, 'abc', paddle.to_tensor(
            np.random.random([IMAGE_SIZE]).astype('float32'),
            place=paddle.CPUPlace()),
                [1, np.random.random([2]).astype('float32')], {
                    'a': 2.0,
                    'b': np.random.random([2]).astype('float32')
                })


class TestComplextDataset(unittest.TestCase):
    def run_main(self, num_workers):
        paddle.static.default_startup_program().random_seed = 1
        paddle.static.default_main_program().random_seed = 1
        place = paddle.CPUPlace()
        with fluid.dygraph.guard(place):
            dataset = ComplextDataset(16)
            assert len(dataset) == 16
            dataloader = DataLoader(
                dataset,
                places=place,
                num_workers=num_workers,
                batch_size=2,
                drop_last=True)

            for i, data in enumerate(dataloader()):
                assert len(data) == 5
                # data[0]: collate 3.1
                assert data[0].shape == [2]
                assert isinstance(data[1], list)
                # data[1]: collate 'abc'
                assert len(data[1]) == 2
                assert isinstance(data[1][0], str)
                assert isinstance(data[1][1], str)
                # data[2]: collate tensor
                assert data[2].shape == [2, IMAGE_SIZE]
                # data[3]: collate list
                assert isinstance(data[3], list)
                assert data[3][0].shape == [2]
                assert data[3][1].shape == [2, 2]
                # data[4]: collate dict
                assert isinstance(data[4], dict)
                assert data[4]['a'].shape == [2]
                assert data[4]['b'].shape == [2, 2]

    def test_main(self):
        for num_workers in [0, 2]:
            self.run_main(num_workers)


333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
class SingleFieldDataset(Dataset):
    def __init__(self, sample_num):
        self.sample_num = sample_num

    def __len__(self):
        return self.sample_num

    def __getitem__(self, idx):
        return np.random.random((2, 3)).astype('float32')


class TestSingleFieldDataset(unittest.TestCase):
    def init_dataset(self):
        self.sample_num = 16
        self.dataset = SingleFieldDataset(self.sample_num)

    def run_main(self, num_workers):
        paddle.static.default_startup_program().random_seed = 1
        paddle.static.default_main_program().random_seed = 1
        place = paddle.CPUPlace()
        with fluid.dygraph.guard(place):
            self.init_dataset()
            dataloader = DataLoader(
                self.dataset,
                places=place,
                num_workers=num_workers,
                batch_size=2,
                drop_last=True)

            for i, data in enumerate(dataloader()):
                assert isinstance(data, paddle.Tensor)
                assert data.shape == [2, 2, 3]

    def test_main(self):
        for num_workers in [0, 2]:
            self.run_main(num_workers)


class SingleFieldIterableDataset(IterableDataset):
    def __init__(self, sample_num):
        self.sample_num = sample_num

    def __iter__(self):
        for _ in range(self.sample_num):
            yield np.random.random((2, 3)).astype('float32')


class TestSingleFieldIterableDataset(TestSingleFieldDataset):
    def init_dataset(self):
        self.sample_num = 16
        self.dataset = SingleFieldIterableDataset(self.sample_num)


386 387 388 389 390 391 392 393 394 395 396 397 398 399
class TestDataLoaderGenerateStates(unittest.TestCase):
    def setUp(self):
        self.inputs = [(0, 1), (0, 2), (1, 3)]
        self.outputs = [[1835504127, 1731038949, 1320224556, 2330041505],
                        [2834126987, 2358157858, 1860244682, 1437227251],
                        [457190280, 2660306227, 859341110, 354512857]]

    def test_main(self):
        from paddle.fluid.dataloader.worker import _generate_states
        for inp, outp in zip(self.inputs, self.outputs):
            out = _generate_states(*inp)
            assert out == outp


400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
class TestDatasetWithDropLast(unittest.TestCase):
    def run_main(self, dataset, num_samples, batch_size):
        for num_workers in [0, 1]:
            for drop_last in [True, False]:
                steps = (num_samples + (1 - int(drop_last)) * \
                        (batch_size - 1)) // batch_size
                dataloader = DataLoader(
                    dataset,
                    batch_size=batch_size,
                    drop_last=drop_last,
                    num_workers=num_workers)
                datas = []
                for data in dataloader:
                    datas.append(data)
                assert len(datas) == steps

    def test_map_dataset(self):
        dataset = RandomDataset(10)
        self.run_main(dataset, 10, 3)

    def test_iterable_dataset(self):
        dataset = RandomIterableDataset(10)
        self.run_main(dataset, 10, 3)


425 426
if __name__ == '__main__':
    unittest.main()