test.cc 37.7 KB
Newer Older
T
tensor-tang 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
T
tensor-tang 已提交
14

15
#include <algorithm>
T
tensor-tang 已提交
16 17 18 19 20 21
#include <random>
#include <string>
#include <vector>
#include "gflags/gflags.h"
#include "glog/logging.h"
#include "gtest/gtest.h"
T
tensor-tang 已提交
22
#include "paddle/fluid/operators/jit/kernels.h"
T
tensor-tang 已提交
23
#include "paddle/fluid/platform/cpu_info.h"
T
tensor-tang 已提交
24
#include "paddle/fluid/platform/place.h"
T
tensor-tang 已提交
25

26
DEFINE_double(acc, 1e-5, "Test accuracy threshold.");
27

T
tensor-tang 已提交
28
template <typename T>
29 30
void RandomVec(const int n, T* a, const T lower = static_cast<T>(-2.f),
               const T upper = static_cast<T>(2.f)) {
T
tensor-tang 已提交
31 32 33 34 35 36 37 38 39
  static unsigned int seed = 100;
  std::mt19937 rng(seed++);
  std::uniform_real_distribution<double> uniform_dist(0, 1);
  for (int i = 0; i < n; ++i) {
    a[i] = static_cast<T>(uniform_dist(rng) * (upper - lower) + lower);
  }
}

template <typename T>
40
void ExpectEQ(const T* target, const T* refer, size_t n) {
T
tensor-tang 已提交
41
  if (std::is_floating_point<T>::value) {
42
    for (size_t i = 0; i < n; ++i) {
T
tensor-tang 已提交
43
      EXPECT_NEAR(target[i], refer[i], FLAGS_acc) << " at index : " << i;
T
tensor-tang 已提交
44 45
    }
  } else {
46
    for (size_t i = 0; i < n; ++i) {
T
tensor-tang 已提交
47
      EXPECT_EQ(target[i], refer[i]) << " at index : " << i;
T
tensor-tang 已提交
48 49 50 51
    }
  }
}

T
tensor-tang 已提交
52 53
std::vector<int> TestSizes() {
  std::vector<int> s;
T
tensor-tang 已提交
54
  for (int i = 1; i < 32; ++i) {
T
tensor-tang 已提交
55 56
    s.push_back(i);
  }
T
tensor-tang 已提交
57 58 59 60
  // test some large size
  s.push_back(100);
  s.push_back(1000);
  s.push_back(2000);
T
tensor-tang 已提交
61 62 63
  return s;
}

T
tensor-tang 已提交
64
namespace jit = paddle::operators::jit;
65
using CPUPlace = paddle::platform::CPUPlace;
T
tensor-tang 已提交
66

67
template <typename KernelTuple, typename PlaceType, typename Tester,
68
          typename... Args>
69 70
void TestAllImpls(const typename KernelTuple::attr_type& attr,
                  const Tester& verifier, const Args&... args) {
T
tensor-tang 已提交
71
  // test jitcode
72
  auto jitcode = jit::GetJitCode<KernelTuple, PlaceType>(attr);
T
tensor-tang 已提交
73 74
  if (jitcode) {
    VLOG(10) << "Test Jitcode Kernel ";
75
    verifier(jitcode, args...);
T
tensor-tang 已提交
76 77
  }
  // test all impls in more
78
  jit::KernelKey kkey(KernelTuple::kernel_type, PlaceType());
T
tensor-tang 已提交
79 80 81 82 83
  auto& pool = jit::KernelPool().Instance().AllKernels();
  auto iter = pool.find(kkey);
  if (iter != pool.end()) {
    auto& impls = iter->second;
    for (auto& impl : impls) {
84
      auto i = dynamic_cast<const jit::KernelMore<KernelTuple>*>(impl.get());
T
tensor-tang 已提交
85 86
      if (i && i->UseMe(attr)) {
        auto more = i->GetFunc();
T
tensor-tang 已提交
87
        VLOG(10) << "Test More Kernel : " << i->ImplType();
88
        verifier(more, args...);
T
tensor-tang 已提交
89 90 91 92
      }
    }
  }
  // test result from Get function
93 94 95
  VLOG(10) << "Test final get function ";
  auto tgt = jit::KernelFuncs<KernelTuple, PlaceType>::Cache().At(attr);
  verifier(tgt, args...);
T
tensor-tang 已提交
96 97
}

98 99 100 101
template <typename KernelTuple, typename PlaceType>
void TestKernelXYZN() {
  using T = typename KernelTuple::data_type;
  VLOG(10) << "Test JITKernel: " << jit::to_string(KernelTuple::kernel_type);
T
tensor-tang 已提交
102
  for (int d : TestSizes()) {
103
    auto ref = jit::GetRefer<KernelTuple>();
T
tensor-tang 已提交
104 105
    EXPECT_TRUE(ref != nullptr);

T
tensor-tang 已提交
106
    std::vector<T> x(d), y(d), zref(d);
T
tensor-tang 已提交
107 108 109
    RandomVec<T>(d, x.data());
    RandomVec<T>(d, y.data());

T
tensor-tang 已提交
110 111 112 113 114 115 116 117 118 119 120
    std::vector<T> xinp(d), yinp(d);  // inplace test
    std::copy(x.begin(), x.end(), xinp.begin());
    std::copy(y.begin(), y.end(), yinp.begin());

    const T* x_data = x.data();
    const T* y_data = y.data();
    T* zref_data = zref.data();
    T* xinp_data = xinp.data();
    T* yinp_data = yinp.data();

    // test refer code inplace
T
tensor-tang 已提交
121
    ref(x_data, y_data, zref_data, d);
T
tensor-tang 已提交
122 123 124 125 126
    ref(x_data, yinp_data, yinp_data, d);
    ref(xinp_data, y_data, xinp_data, d);
    ExpectEQ<T>(xinp_data, zref_data, d);
    ExpectEQ<T>(yinp_data, zref_data, d);

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
    auto verifier = [](const typename KernelTuple::func_type tgt,
                       const std::vector<T>& x, const std::vector<T>& y,
                       const std::vector<T>& zref) {
      EXPECT_TRUE(tgt != nullptr);
      EXPECT_EQ(zref.size(), x.size());
      EXPECT_EQ(zref.size(), y.size());
      const T* x_data = x.data();
      const T* y_data = y.data();
      const T* zref_data = zref.data();
      const int d = zref.size();

      std::vector<T> ztgt(d);
      T* ztgt_data = ztgt.data();
      // test normal
      tgt(x_data, y_data, ztgt_data, d);
      ExpectEQ<T>(ztgt_data, zref_data, d);
      // test inplace x
      std::copy(x.begin(), x.end(), ztgt.begin());
      tgt(ztgt_data, y_data, ztgt_data, d);
      ExpectEQ<T>(ztgt_data, zref_data, d);
      // test inplace y
      std::copy(y.begin(), y.end(), ztgt.begin());
      tgt(x_data, ztgt_data, ztgt_data, d);
      ExpectEQ<T>(ztgt_data, zref_data, d);
    };

    TestAllImpls<KernelTuple, PlaceType>(d, verifier, x, y, zref);
T
tensor-tang 已提交
154 155
  }
}
T
tensor-tang 已提交
156

157 158 159 160
template <typename KernelTuple, typename PlaceType>
void TestKernelAXYN() {
  using T = typename KernelTuple::data_type;
  VLOG(10) << "Test JITKernel: " << jit::to_string(KernelTuple::kernel_type);
161
  for (int d : TestSizes()) {
162
    auto ref = jit::GetRefer<KernelTuple>();
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
    EXPECT_TRUE(ref != nullptr);

    const T a = static_cast<T>(3);
    std::vector<T> x(d), yref(d);
    std::vector<T> xinp(d);  // inplace test
    RandomVec<T>(d, x.data());
    std::copy(x.begin(), x.end(), xinp.begin());

    const T* x_data = x.data();
    T* yref_data = yref.data();
    T* xinp_data = xinp.data();
    // test refer code inplace
    ref(&a, x_data, yref_data, d);
    ref(&a, xinp_data, xinp_data, d);
    ExpectEQ<T>(xinp_data, yref_data, d);

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
    auto verifier = [](const typename KernelTuple::func_type tgt, const T a,
                       const std::vector<T>& x, const std::vector<T>& yref) {
      EXPECT_TRUE(tgt != nullptr);
      EXPECT_EQ(yref.size(), x.size());
      const T* x_data = x.data();
      const T* yref_data = yref.data();
      const int d = yref.size();
      std::vector<T> ytgt(d);
      T* ytgt_data = ytgt.data();
      // test normal
      tgt(&a, x_data, ytgt_data, d);
      ExpectEQ<T>(ytgt_data, yref_data, d);
      // test inplace x
      std::copy(x.begin(), x.end(), ytgt.begin());
      tgt(&a, ytgt_data, ytgt_data, d);
      ExpectEQ<T>(ytgt_data, yref_data, d);
    };
    TestAllImpls<KernelTuple, PlaceType>(d, verifier, a, x, yref);
197 198 199
  }
}

200 201 202 203
template <typename KernelTuple, typename PlaceType>
void TestKernelXYN() {
  using T = typename KernelTuple::data_type;
  VLOG(10) << "Test JITKernel: " << jit::to_string(KernelTuple::kernel_type);
204
  for (int d : TestSizes()) {
205
    auto ref = jit::GetRefer<KernelTuple>();
206 207 208 209
    EXPECT_TRUE(ref != nullptr);

    std::vector<T> x(d), yref(d);
    std::vector<T> xinp(d);  // inplace test
210
    RandomVec<T>(d, x.data());
211 212 213 214 215 216 217 218 219
    std::copy(x.begin(), x.end(), xinp.begin());

    const T* x_data = x.data();
    T* yref_data = yref.data();
    T* xinp_data = xinp.data();
    // test refer code inplace
    ref(x_data, yref_data, d);
    ref(xinp_data, xinp_data, d);
    ExpectEQ<T>(xinp_data, yref_data, d);
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
    auto verifier = [](const typename KernelTuple::func_type tgt,
                       const std::vector<T>& x, const std::vector<T>& yref) {
      EXPECT_TRUE(tgt != nullptr);
      EXPECT_EQ(yref.size(), x.size());
      const T* x_data = x.data();
      const T* yref_data = yref.data();
      const int d = yref.size();
      std::vector<T> ytgt(d);
      T* ytgt_data = ytgt.data();
      // test normal
      tgt(x_data, ytgt_data, d);
      ExpectEQ<T>(ytgt_data, yref_data, d);
      // test inplace x
      std::copy(x.begin(), x.end(), ytgt.begin());
      tgt(ytgt_data, ytgt_data, d);
      ExpectEQ<T>(ytgt_data, yref_data, d);
    };
    TestAllImpls<KernelTuple, PlaceType>(d, verifier, x, yref);
  }
}

template <typename KernelTuple, typename PlaceType>
void TestKernelXRN() {
  using T = typename KernelTuple::data_type;
  VLOG(10) << "Test JITKernel: " << jit::to_string(KernelTuple::kernel_type);
  auto last_acc = FLAGS_acc;
  FLAGS_acc = 1e-4;
  for (int d : TestSizes()) {
    auto ref = jit::GetRefer<KernelTuple>();
    EXPECT_TRUE(ref != nullptr);
    std::vector<T> x(d);
    RandomVec<T>(d, x.data());
    T ref_res;
    ref(x.data(), &ref_res, d);
254

255 256 257 258 259 260 261 262
    auto verifier = [](const typename KernelTuple::func_type tgt,
                       const std::vector<T>& x, const T ref_res) {
      EXPECT_TRUE(tgt != nullptr);
      T tgt_res;
      tgt(x.data(), &tgt_res, x.size());
      ExpectEQ<T>(&tgt_res, &ref_res, 1);
    };
    TestAllImpls<KernelTuple, PlaceType>(d, verifier, x, ref_res);
263
  }
264
  FLAGS_acc = last_acc;
265 266
}

267 268 269 270
template <typename KernelTuple, typename PlaceType>
void TestKernelLSTM() {
  using T = typename KernelTuple::data_type;
  VLOG(10) << "Test JITKernel: " << jit::to_string(KernelTuple::kernel_type);
T
tensor-tang 已提交
271
  std::vector<std::string> all_acts = {"sigmoid", "tanh", "relu", "identity"};
T
tensor-tang 已提交
272 273 274
  auto test_sizes = TestSizes();
  test_sizes.erase(std::remove(test_sizes.begin(), test_sizes.end(), 1000));
  for (int d : test_sizes) {
T
tensor-tang 已提交
275 276 277 278 279 280 281
    for (bool use_peephole : {true, false}) {
      for (auto& act_gate : all_acts) {
        for (auto& act_cand : all_acts) {
          for (auto& act_cell : all_acts) {
            const jit::lstm_attr_t attr(
                d, jit::to_kerneltype(act_gate), jit::to_kerneltype(act_cand),
                jit::to_kerneltype(act_cell), use_peephole);
282
            auto ref = jit::GetRefer<KernelTuple>();
T
tensor-tang 已提交
283 284 285
            EXPECT_TRUE(ref != nullptr);
            std::vector<T> xsrc(4 * d), wp(3 * d), ct_1(d);
            std::vector<T> ct_ref(d), ht_ref(d), checked(2 * d);
286
            RandomVec<T>(4 * d, xsrc.data());
287 288
            RandomVec<T>(3 * d, wp.data(), -1.f, 1.f);
            RandomVec<T>(d, ct_1.data(), -1.f, 1.f);
T
tensor-tang 已提交
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
            // x could be changed after compute, so copy to save src
            std::vector<T> x(xsrc.size());
            std::copy(xsrc.begin(), xsrc.end(), x.begin());
            const T* ct_1_data = ct_1.data();
            const T* wp_data = wp.data();
            T* x_data = x.data();
            T* checked_data = checked.data();
            T* ct_ref_data = ct_ref.data();
            T* ht_ref_data = ht_ref.data();
            jit::lstm_t step;
            step.gates = x_data;
            step.ct_1 = ct_1_data;
            step.ct = ct_ref_data;
            step.ht = ht_ref_data;
            if (use_peephole) {
              step.wp = wp_data;
              step.checked = checked_data;
            }
            ref(&step, &attr);
T
tensor-tang 已提交
308
            VLOG(10) << attr;
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353

            auto verifier = [](
                const typename KernelTuple::func_type tgt,
                const std::vector<T>& xsrc, const std::vector<T>& wp,
                const std::vector<T>& ct_1, const std::vector<T>& ct_ref,
                const std::vector<T>& ht_ref,
                const typename KernelTuple::attr_type& attr) {
              EXPECT_TRUE(tgt != nullptr);
              EXPECT_EQ(ct_ref.size(), ht_ref.size());
              EXPECT_EQ(ct_1.size(), ht_ref.size());
              EXPECT_EQ(xsrc.size(), 4 * ht_ref.size());
              EXPECT_EQ(wp.size(), 3 * ht_ref.size());

              // x could be changed after compute, so copy to save src
              int d = ht_ref.size();
              std::vector<T> x(xsrc.size()), ct(ct_ref.size()),
                  ht(ht_ref.size());
              std::vector<T> checked(2 * d);
              std::copy(xsrc.begin(), xsrc.end(), x.begin());

              const T* ct_1_data = ct_1.data();
              const T* wp_data = wp.data();
              const T* ct_ref_data = ct_ref.data();
              const T* ht_ref_data = ht_ref.data();
              T* x_data = x.data();
              T* ct_data = ct.data();
              T* ht_data = ht.data();
              T* checked_data = checked.data();

              jit::lstm_t step;
              step.gates = x_data;
              step.ct_1 = ct_1_data;
              step.ct = ct_data;
              step.ht = ht_data;
              if (attr.use_peephole) {
                step.wp = wp_data;
                step.checked = checked_data;
              }

              tgt(&step, &attr);
              ExpectEQ<T>(ct_data, ct_ref_data, d);
              ExpectEQ<T>(ht_data, ht_ref_data, d);
            };
            TestAllImpls<KernelTuple, PlaceType>(attr, verifier, xsrc, wp, ct_1,
                                                 ct_ref, ht_ref, attr);
T
tensor-tang 已提交
354 355 356 357 358 359 360
          }
        }
      }
    }
  }
}

361 362 363 364
template <typename KernelTuple, typename PlaceType>
void TestKernelGRU() {
  using T = typename KernelTuple::data_type;
  VLOG(10) << "Test JITKernel: " << jit::to_string(KernelTuple::kernel_type);
365
  std::vector<std::string> all_acts = {"sigmoid", "tanh", "relu", "identity"};
T
tensor-tang 已提交
366 367 368
  auto test_sizes = TestSizes();
  test_sizes.erase(std::remove(test_sizes.begin(), test_sizes.end(), 1000));
  for (int d : test_sizes) {
369 370 371 372
    for (auto& act_gate : all_acts) {
      for (auto& act_cand : all_acts) {
        const jit::gru_attr_t attr(d, jit::to_kerneltype(act_gate),
                                   jit::to_kerneltype(act_cand));
373
        auto ref = jit::GetRefer<KernelTuple>();
374 375
        EXPECT_TRUE(ref != nullptr);
        std::vector<T> xsrc(3 * d), ht_1(d), ht_ref(d);
376 377
        RandomVec<T>(3 * d, xsrc.data());
        RandomVec<T>(d, ht_1.data());
378 379 380 381 382 383 384 385 386 387 388
        // x could be changed after compute, so copy to save src
        std::vector<T> x(xsrc.size());
        std::copy(xsrc.begin(), xsrc.end(), x.begin());
        const T* ht_1_data = ht_1.data();
        T* x_data = x.data();
        T* ht_ref_data = ht_ref.data();
        jit::gru_t step;
        step.gates = x_data;
        step.ht_1 = ht_1_data;
        step.ht = ht_ref_data;
        ref(&step, &attr);
T
tensor-tang 已提交
389
        VLOG(10) << attr;
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
        auto verifier = [](const typename KernelTuple::func_type tgt,
                           const std::vector<T>& xsrc,
                           const std::vector<T>& ht_1,
                           const std::vector<T>& ht_ref,
                           const typename KernelTuple::attr_type& attr) {
          EXPECT_TRUE(tgt != nullptr);
          EXPECT_EQ(ht_1.size(), ht_ref.size());
          EXPECT_EQ(xsrc.size(), 3 * ht_ref.size());

          // x could be changed after compute, so copy to save src
          int d = ht_ref.size();
          std::vector<T> x(xsrc.size()), ht(ht_ref.size());
          std::copy(xsrc.begin(), xsrc.end(), x.begin());
          const T* ht_1_data = ht_1.data();
          const T* ht_ref_data = ht_ref.data();
          T* x_data = x.data();
          T* ht_data = ht.data();
          jit::gru_t step;
          step.gates = x_data;
          step.ht_1 = ht_1_data;
          step.ht = ht_data;
          tgt(&step, &attr);
          ExpectEQ<T>(ht_data, ht_ref_data, d);
        };
        TestAllImpls<KernelTuple, PlaceType>(attr, verifier, xsrc, ht_1, ht_ref,
                                             attr);
416 417 418 419 420
      }
    }
  }
}

421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
template <typename KernelTuple, typename PlaceType>
void TestKernelNCHW16CMulNC() {
  using T = typename KernelTuple::data_type;
  VLOG(10) << "Test JITKernel: " << jit::to_string(KernelTuple::kernel_type);
  const int n = 3, c = 16 * 4, h = 10, w = 10;
  auto ref = jit::GetRefer<KernelTuple>();
  EXPECT_TRUE(ref != nullptr);
  int sz = n * c * h * w;
  std::vector<T> x(sz), y(n * c), zref(sz);
  std::vector<T> ztgt(sz), zjit(sz);
  RandomVec<T>(sz, x.data());
  RandomVec<T>(n * c, y.data());

  const T* x_data = x.data();
  const T* y_data = y.data();
  T* zref_data = zref.data();
  T* ztgt_data = ztgt.data();
  T* zjit_data = zjit.data();
  constexpr int simd_width = ZMM_FLOAT_BLOCK;
  int C = c / simd_width;
  auto tgt = jit::KernelFuncs<KernelTuple, PlaceType>::Cache().At(0);
  auto jitcode = jit::GetJitCode<KernelTuple, PlaceType>(0);
  EXPECT_TRUE(tgt != nullptr);

  if (std::is_same<T, float>::value &&
      paddle::platform::MayIUse(paddle::platform::avx512f)) {
    EXPECT_TRUE(jitcode != nullptr);
  }
  for (int ni = 0; ni < n; ni++) {
    for (int ci = 0; ci < C; ci++) {
      auto ptr_x =
          x_data + ni * C * h * w * simd_width + ci * h * w * simd_width;
      auto ptr_y = y_data + ni * C * simd_width + ci * simd_width;
      auto ptr_zref =
          zref_data + ni * C * h * w * simd_width + ci * h * w * simd_width;
      auto ptr_ztgt =
          ztgt_data + ni * C * h * w * simd_width + ci * h * w * simd_width;

      ref(ptr_x, ptr_y, ptr_zref, h, w);
      tgt(ptr_x, ptr_y, ptr_ztgt, h, w);

      if (jitcode) {
        auto ptr_zjit =
            zjit_data + ni * C * h * w * simd_width + ci * h * w * simd_width;
        jitcode(ptr_x, ptr_y, ptr_zjit, h, w);
      }
    }
  }
  ExpectEQ<T>(ztgt_data, zref_data, sz);
  if (jitcode) {
    ExpectEQ<T>(zjit_data, zref_data, sz);
  }
}

template <typename KernelTuple, typename PlaceType>
void TestKernelLayerNorm() {
  using T = typename KernelTuple::data_type;
  VLOG(10) << "Test JITKernel: " << jit::to_string(KernelTuple::kernel_type);
  const T epsilon = 9.99999975e-06;
  for (int n : {1, 2, 10}) {
    for (int x_dim_0 : {1, 9, 17, 50}) {
      int left = n * x_dim_0;
      for (int x_dim_1 : TestSizes()) {
        int right = x_dim_1;
        auto ref = jit::GetRefer<KernelTuple>();
        EXPECT_TRUE(ref != nullptr);
        int sz = left * right;
        std::vector<T> x(sz), mean(left), var(left), scale(right), bias(right),
            outref(sz);
        RandomVec<T>(sz, x.data());
        RandomVec<T>(left, mean.data());
        RandomVec<T>(left, var.data());
        RandomVec<T>(right, scale.data());
        RandomVec<T>(right, bias.data());

        const T* scale_data = scale.data();
        const T* bias_data = bias.data();
        T* x_data = x.data();
        T* mean_data = mean.data();
        T* var_data = var.data();
        T* outref_data = outref.data();

        ref(x_data, outref_data, mean_data, var_data, scale_data, bias_data,
            left, epsilon, right);

        auto verifier = [](
            const typename KernelTuple::func_type tgt, const std::vector<T>& x_,
            const std::vector<T>& outref_, const std::vector<T>& mean_,
            const std::vector<T>& var_, const std::vector<T>& scale,
            const std::vector<T>& bias, const int& left, const float& epsilon,
            const typename KernelTuple::attr_type& right) {
          EXPECT_TRUE(tgt != nullptr);
          std::vector<T> outtgt(outref_.size());
          std::vector<T> x(x_.size());
          std::vector<T> mean(mean_.size());
          std::vector<T> var(var_.size());
          std::vector<T> outref(outref_.size());
          std::copy(x_.begin(), x_.end(), x.begin());
          std::copy(mean_.begin(), mean_.end(), mean.begin());
          std::copy(var_.begin(), var_.end(), var.begin());
          std::copy(outref_.begin(), outref_.end(), outref.begin());

          EXPECT_EQ(x.size(), static_cast<size_t>(left * right));
          EXPECT_EQ(outref.size(), static_cast<size_t>(left * right));
          EXPECT_EQ(mean.size(), static_cast<size_t>(left));
          EXPECT_EQ(var.size(), static_cast<size_t>(left));
          EXPECT_EQ(scale.size(), static_cast<size_t>(right));
          EXPECT_EQ(bias.size(), static_cast<size_t>(right));

          const T* scale_data = scale.data();
          const T* bias_data = bias.data();
          T* x_data = x.data();
          T* mean_data = mean.data();
          T* var_data = var.data();
          T* outref_data = outref.data();
          T* outtgt_data = outtgt.data();
          tgt(x_data, outtgt_data, mean_data, var_data, scale_data, bias_data,
              left, epsilon, right);
          ExpectEQ<T>(outtgt_data, outref_data, left * right);
        };
        TestAllImpls<KernelTuple, PlaceType>(right, verifier, x, outref, mean,
                                             var, scale, bias, left, epsilon,
                                             right);
      }
    }
  }
}

template <typename KernelTuple, typename PlaceType>
void TestKernelCRFDecoding() {
  using T = typename KernelTuple::data_type;
  VLOG(10) << "Test JITKernel: " << jit::to_string(KernelTuple::kernel_type);
  constexpr int state_trans_base_idx = 2;
  auto test_sizes = TestSizes();
  test_sizes.erase(std::remove(test_sizes.begin(), test_sizes.end(), 2000));
  for (int seq_len : {1, 11, 17, 50}) {
    for (int tag_num : test_sizes) {
      auto ref = jit::GetRefer<KernelTuple>();
      EXPECT_TRUE(ref != nullptr);
      int x_sz = seq_len * tag_num;
      int w_sz = (tag_num + state_trans_base_idx) * tag_num;
      std::vector<T> x(x_sz), w(w_sz), alpharef(x_sz);
      std::vector<int> trackref(x_sz);
      RandomVec<T>(x_sz, x.data());
      RandomVec<T>(w_sz, w.data());

      ref(seq_len, (const T*)x.data(), (const T*)w.data(), alpharef.data(),
          trackref.data(), tag_num);

      auto verifier = [](
          const typename KernelTuple::func_type tgt, const int& seq_len,
          const std::vector<T>& x, const std::vector<T>& w,
          const std::vector<T>& alpharef, const std::vector<int>& trackref,
          const typename KernelTuple::attr_type& tag_num) {
        constexpr int state_trans_base_idx = 2;
        EXPECT_TRUE(tgt != nullptr);
        EXPECT_EQ(x.size(), static_cast<size_t>(seq_len * tag_num));
        EXPECT_EQ(w.size(), static_cast<size_t>(
                                (tag_num + state_trans_base_idx) * tag_num));
        EXPECT_EQ(alpharef.size(), static_cast<size_t>(seq_len * tag_num));
        EXPECT_EQ(trackref.size(), static_cast<size_t>(seq_len * tag_num));
        std::vector<T> alphatgt(alpharef.size());
        std::vector<int> tracktgt(trackref.size());
        memcpy(tracktgt.data(), trackref.data(), tag_num * sizeof(int));
        tgt(seq_len, (const T*)x.data(), (const T*)w.data(), alphatgt.data(),
            tracktgt.data(), tag_num);
        ExpectEQ<T>(alpharef.data(), alphatgt.data(), seq_len * tag_num);
        ExpectEQ<int>(trackref.data(), tracktgt.data(), seq_len * tag_num);
      };
      TestAllImpls<KernelTuple, PlaceType>(tag_num, verifier, seq_len, x, w,
                                           alpharef, trackref, tag_num);
    }
  }
}

template <typename KernelTuple, typename PlaceType>
void TestKernelSeqPool() {
  using T = typename KernelTuple::data_type;
  VLOG(10) << "Test JITKernel: " << jit::to_string(KernelTuple::kernel_type);
600 601
  std::vector<jit::SeqPoolType> pool_types = {
      jit::SeqPoolType::kSum, jit::SeqPoolType::kAvg, jit::SeqPoolType::kSqrt};
T
tensor-tang 已提交
602 603
  auto test_sizes = TestSizes();
  test_sizes.erase(std::remove(test_sizes.begin(), test_sizes.end(), 1000));
604
  for (auto type : pool_types) {
T
tensor-tang 已提交
605
    for (int w : test_sizes) {
T
tensor-tang 已提交
606
      jit::seq_pool_attr_t attr(w, type);
T
tensor-tang 已提交
607
      for (int h : test_sizes) {
T
tensor-tang 已提交
608
        attr.h = h;
609
        auto ref = jit::GetRefer<KernelTuple>();
610 611
        EXPECT_TRUE(ref != nullptr);
        std::vector<T> x(h * w), yref(w);
612
        RandomVec<T>(h * w, x.data());
613 614 615 616
        const T* x_data = x.data();
        T* yref_data = yref.data();
        ref(x_data, yref_data, &attr);
        VLOG(10) << attr;
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
        auto verifier = [](const typename KernelTuple::func_type tgt,
                           const std::vector<T>& x, const std::vector<T>& yref,
                           const typename KernelTuple::attr_type& attr) {
          EXPECT_TRUE(tgt != nullptr);
          EXPECT_EQ(x.size() % yref.size(), static_cast<size_t>(0));
          int w = yref.size();
          std::vector<T> y(w);
          const T* x_data = x.data();
          const T* yref_data = yref.data();
          T* y_data = y.data();
          tgt(x_data, y_data, &attr);
          ExpectEQ<T>(y_data, yref_data, w);
        };
        TestAllImpls<KernelTuple, PlaceType>(attr, verifier, x, yref, attr);
      }
    }
  }
}

template <typename KernelTuple, typename PlaceType>
void TestKernelEmbSeqPool() {
  using T = typename KernelTuple::data_type;
  VLOG(10) << "Test JITKernel: " << jit::to_string(KernelTuple::kernel_type);
  int64_t tbl_h = 1e4;
  std::vector<jit::SeqPoolType> pool_types = {
      jit::SeqPoolType::kSum};  // only support sum yet
  auto test_sizes = TestSizes();
  test_sizes.erase(std::remove(test_sizes.begin(), test_sizes.end(), 1000));
  for (int tbl_w : test_sizes) {
    std::vector<T> table(tbl_h * tbl_w);
    RandomVec<T>(tbl_h * tbl_w, table.data());
    const T* table_data = table.data();
    for (auto type : pool_types) {
      for (int idx_w : {1, 2, 10, 16}) {
        for (int idx_h : {1, 2, 9, 13, 16}) {
          auto ref = jit::GetRefer<KernelTuple>();
          EXPECT_TRUE(ref != nullptr);
          std::vector<int64_t> idx(idx_h * idx_w);
          RandomVec<int64_t>(idx_h * idx_w, idx.data(), 0, tbl_h - 1);
          int64_t out_w = tbl_w * idx_w;
          std::vector<T> oref(out_w);
          const int64_t* idx_data = idx.data();
          T* o_data = oref.data();
          jit::emb_seq_pool_attr_t attr(tbl_h, tbl_w, idx_h, idx_w, out_w,
                                        type);
          ref(table_data, idx_data, o_data, &attr);

          auto verifier = [](const typename KernelTuple::func_type tgt,
                             const std::vector<T>& table,
                             const std::vector<int64_t>& idx,
                             const std::vector<T>& oref,
                             const typename KernelTuple::attr_type& attr) {
            EXPECT_TRUE(tgt != nullptr);
            EXPECT_EQ(table.size(), static_cast<size_t>(attr.table_height *
                                                        attr.table_width));
            EXPECT_EQ(idx.size(), static_cast<size_t>(attr.index_height *
                                                      attr.index_width));
            EXPECT_EQ(oref.size(),
                      static_cast<size_t>(attr.table_width * attr.index_width));
            const T* table_data = table.data();
            const int64_t* idx_data = idx.data();
            const T* oref_data = oref.data();
            int o_w = oref.size();
            std::vector<T> out(o_w);
            T* o_data = out.data();
            tgt(table_data, idx_data, o_data, &attr);
            ExpectEQ<T>(o_data, oref_data, o_w);
          };
          TestAllImpls<KernelTuple, PlaceType>(attr, verifier, table, idx, oref,
                                               attr);
        }
688 689 690 691 692
      }
    }
  }
}

693 694 695 696
template <typename KernelTuple, typename PlaceType>
void TestKernelMatMul() {
  using T = typename KernelTuple::data_type;
  VLOG(10) << "Test JITKernel: " << jit::to_string(KernelTuple::kernel_type);
697
  auto last_acc = FLAGS_acc;
T
tensor-tang 已提交
698 699
  // export MKL_CBWR=AVX would make MKL force to use AVX
  // export KMP_DETERMINISTIC_REDUCTION=yes would make the result deterministic
700
  FLAGS_acc = 1e-3;
T
tensor-tang 已提交
701 702 703
  for (int m : {1, 2, 3, 4}) {
    for (int n : {1, 2, 3, 4}) {
      for (int k : TestSizes()) {
704
        auto ref = jit::GetRefer<KernelTuple>();
T
tensor-tang 已提交
705 706
        EXPECT_TRUE(ref != nullptr);
        std::vector<T> a(m * k), b(k * n), c(m * n);
707 708
        RandomVec<T>(m * k, a.data());
        RandomVec<T>(k * n, b.data());
T
tensor-tang 已提交
709 710 711
        const T* a_data = a.data();
        const T* b_data = b.data();
        T* c_data = c.data();
712 713
        const jit::matmul_attr_t attr{m, n, k};
        ref(a_data, b_data, c_data, &attr);
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
        auto verifier = [](const typename KernelTuple::func_type tgt,
                           const std::vector<T>& a, const std::vector<T>& b,
                           const std::vector<T>& cref,
                           const typename KernelTuple::attr_type& attr) {
          EXPECT_TRUE(tgt != nullptr);
          EXPECT_EQ(a.size(), static_cast<size_t>(attr.m * attr.k));
          EXPECT_EQ(b.size(), static_cast<size_t>(attr.k * attr.n));
          EXPECT_EQ(cref.size(), static_cast<size_t>(attr.m * attr.n));
          std::vector<T> c(cref.size());
          const T* a_data = a.data();
          const T* b_data = b.data();
          const T* cref_data = cref.data();
          T* c_data = c.data();
          tgt(a_data, b_data, c_data, &attr);
          ExpectEQ<T>(c_data, cref_data, attr.m * attr.n);
        };
        TestAllImpls<KernelTuple, PlaceType>(attr, verifier, a, b, c, attr);
T
tensor-tang 已提交
731 732 733
      }
    }
  }
734
  FLAGS_acc = last_acc;
T
tensor-tang 已提交
735 736
}

737 738 739 740
template <typename KernelTuple, typename PlaceType>
void TestKernelSoftmax() {
  using T = typename KernelTuple::data_type;
  VLOG(10) << "Test JITKernel: " << jit::to_string(KernelTuple::kernel_type);
741 742
  for (int bs : {1, 2, 10}) {
    for (int n : TestSizes()) {
743
      auto ref = jit::GetRefer<KernelTuple>();
744 745
      EXPECT_TRUE(ref != nullptr);
      std::vector<T> x(bs * n), y(bs * n);
746
      RandomVec<T>(bs * n, x.data());
747 748 749 750 751 752 753 754 755 756
      const T* x_data = x.data();
      T* y_data = y.data();

      std::vector<T> xinp(x.size());  // inplace test
      std::copy(x.begin(), x.end(), xinp.begin());
      ref(x_data, y_data, n, bs);
      T* xinp_data = xinp.data();
      ref(xinp_data, xinp_data, n, bs);
      ExpectEQ<T>(xinp_data, y_data, n * bs);

757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
      auto verifier = [](const typename KernelTuple::func_type tgt,
                         const std::vector<T>& x, const std::vector<T>& yref,
                         int n, int bs) {
        EXPECT_TRUE(tgt != nullptr);
        EXPECT_EQ(yref.size(), x.size());
        EXPECT_EQ(x.size(), static_cast<size_t>(n * bs));
        const T* x_data = x.data();
        const T* yref_data = yref.data();
        std::vector<T> ytgt(n * bs);
        T* ytgt_data = ytgt.data();
        // test normal
        tgt(x_data, ytgt_data, n, bs);
        ExpectEQ<T>(ytgt_data, yref_data, n * bs);
        // test inplace x
        std::copy(x.begin(), x.end(), ytgt.begin());
        tgt(ytgt_data, ytgt_data, n, bs);
        ExpectEQ<T>(ytgt_data, yref_data, n * bs);
      };
      TestAllImpls<KernelTuple, PlaceType>(n, verifier, x, y, n, bs);
776 777 778 779
    }
  }
}

780 781 782 783
template <typename KernelTuple, typename PlaceType>
void TestKernelSgd() {
  using T = typename KernelTuple::data_type;
  VLOG(10) << "Test JITKernel: " << jit::to_string(KernelTuple::kernel_type);
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
  const T lr = 0.1;
  auto UnDuplicatedRandomVec = [](int n, const int64_t lower,
                                  const int64_t upper) -> std::vector<int64_t> {
    PADDLE_ENFORCE_LE(static_cast<size_t>(upper - lower), n - 1);
    PADDLE_ENFORCE_GT(n, 0);
    std::vector<int64_t> all, out;
    for (int i = 0; i < n; ++i) {
      all.push_back(i);
    }
    std::random_shuffle(all.begin(), all.end());
    out.insert(out.begin(), all.begin(), all.begin() + n);
    return out;
  };
  for (int param_h : {1, 10}) {
    for (int grad_w : TestSizes()) {
      std::vector<T> param(param_h * grad_w);
      std::vector<T> param_out(param_h * grad_w);
801
      RandomVec<T>(param_h * grad_w, param.data());
802 803 804 805 806 807
      const T* param_data = param.data();
      T* out_data = param_out.data();
      for (int rows_size = 1; rows_size <= param_h; ++rows_size) {
        std::vector<T> grad(rows_size * grad_w);
        std::vector<int64_t> rows =
            UnDuplicatedRandomVec(rows_size, 0, rows_size - 1);
808
        RandomVec<T>(rows_size * grad_w, grad.data());
809 810
        const int64_t* rows_data = rows.data();
        const T* grad_data = grad.data();
811
        auto ref = jit::GetRefer<KernelTuple>();
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
        EXPECT_TRUE(ref != nullptr);
        jit::sgd_attr_t attr(param_h, grad_w, rows_size, grad_w, rows_size);
        ref(&lr, param_data, grad_data, rows_data, out_data, &attr);

        // inplace test
        std::vector<T> inp(param.size());
        std::copy(param.begin(), param.end(), inp.begin());
        T* inp_data = inp.data();
        ref(&lr, inp_data, grad_data, rows_data, inp_data, &attr);
        // only the selected rows should be equal
        for (int i = 0; i < rows_size; ++i) {
          ExpectEQ<T>(inp_data + rows[i] * grad_w, out_data + rows[i] * grad_w,
                      grad_w);
        }

827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
        auto verifier = [](
            const typename KernelTuple::func_type tgt, const T lr,
            const std::vector<T>& param, const std::vector<T>& grad,
            const std::vector<int64_t>& rows, const std::vector<T>& oref,
            const typename KernelTuple::attr_type& attr) {
          EXPECT_TRUE(tgt != nullptr);
          EXPECT_EQ(param.size(),
                    static_cast<size_t>(attr.param_height * attr.param_width));
          EXPECT_EQ(grad.size(),
                    static_cast<size_t>(attr.grad_height * attr.grad_width));
          EXPECT_EQ(rows.size(), static_cast<size_t>(attr.selected_rows_size));
          EXPECT_EQ(param.size(), oref.size());
          const T* param_data = param.data();
          const T* grad_data = grad.data();
          const int64_t* rows_data = rows.data();
          const T* oref_data = oref.data();

          std::vector<T> out(oref.size());
          T* o_data = out.data();
          tgt(&lr, param_data, grad_data, rows_data, o_data, &attr);
          // only the selected rows should be equal
          for (size_t i = 0; i < rows.size(); ++i) {
            ExpectEQ<T>(o_data + rows[i] * attr.grad_width,
                        oref_data + rows[i] * attr.grad_width, attr.grad_width);
          }
852

853 854 855 856 857 858 859 860 861 862
          // inplace
          std::copy(param.begin(), param.end(), out.begin());
          tgt(&lr, o_data, grad_data, rows_data, o_data, &attr);
          for (size_t i = 0; i < rows.size(); ++i) {
            ExpectEQ<T>(o_data + rows[i] * attr.grad_width,
                        oref_data + rows[i] * attr.grad_width, attr.grad_width);
          }
        };
        TestAllImpls<KernelTuple, PlaceType>(attr, verifier, lr, param, grad,
                                             rows, param_out, attr);
863 864 865 866 867
      }
    }
  }
}

868 869 870 871
template <typename KernelTuple, typename PlaceType>
void TestKernelVBroadcast() {
  using T = typename KernelTuple::data_type;
  VLOG(10) << "Test JITKernel: " << jit::to_string(KernelTuple::kernel_type);
872 873 874 875 876
  for (int w : TestSizes()) {
    std::vector<T> x(w);
    RandomVec<T>(w, x.data());
    const T* x_data = x.data();
    for (int64_t h : {1, 2, 6}) {
877
      auto ref = jit::GetRefer<KernelTuple>();
878 879 880 881 882
      EXPECT_TRUE(ref != nullptr);
      std::vector<T> y(w * h);
      T* y_data = y.data();
      ref(x_data, y_data, h, w);

883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
      auto verifier = [](const typename KernelTuple::func_type tgt,
                         const std::vector<T>& x, const std::vector<T>& yref,
                         const int64_t& h,
                         const typename KernelTuple::attr_type& attr) {
        EXPECT_TRUE(tgt != nullptr);
        EXPECT_EQ(x.size(), static_cast<size_t>(attr));
        EXPECT_EQ(yref.size(), x.size() * h);
        std::vector<T> y(yref.size());
        const T* x_data = x.data();
        const T* yref_data = yref.data();
        T* y_data = y.data();
        tgt(x_data, y_data, h, attr);
        ExpectEQ<T>(y_data, yref_data, yref.size());
      };
      TestAllImpls<KernelTuple, PlaceType>(static_cast<int64_t>(w), verifier, x,
                                           y, h, static_cast<int64_t>(w));
899 900 901 902
    }
  }
}

903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
#define TestKernelVMul TestKernelXYZN
#define TestKernelVAdd TestKernelXYZN
#define TestKernelVAddRelu TestKernelXYZN
#define TestKernelVSub TestKernelXYZN

#define TestKernelVScal TestKernelAXYN
#define TestKernelVAddBias TestKernelAXYN

#define TestKernelVRelu TestKernelXYN
#define TestKernelVIdentity TestKernelXYN
#define TestKernelVSquare TestKernelXYN
#define TestKernelVExp TestKernelXYN
#define TestKernelVSigmoid TestKernelXYN
#define TestKernelVTanh TestKernelXYN
#define TestKernelVCopy TestKernelXYN

#define TestKernelHMax TestKernelXRN
#define TestKernelHSum TestKernelXRN

#define TestKernelLSTMCtHt TestKernelLSTM
#define TestKernelLSTMC1H1 TestKernelLSTM

#define TestKernelGRUH1 TestKernelGRU
#define TestKernelGRUHtPart1 TestKernelGRU
#define TestKernelGRUHtPart2 TestKernelGRU

#define TEST_CPU_KERNEL(kernel_type)                                      \
  TEST(JITKernel, kernel_type) {                                          \
    TestKernel##kernel_type<jit::kernel_type##Tuple<float>, CPUPlace>();  \
    TestKernel##kernel_type<jit::kernel_type##Tuple<double>, CPUPlace>(); \
T
tensor-tang 已提交
933
  }
T
tensor-tang 已提交
934

935 936 937 938
TEST_CPU_KERNEL(VMul);
TEST_CPU_KERNEL(VAdd);
TEST_CPU_KERNEL(VAddRelu);
TEST_CPU_KERNEL(VSub);
T
tensor-tang 已提交
939

940 941
TEST_CPU_KERNEL(VScal);
TEST_CPU_KERNEL(VAddBias);
T
tensor-tang 已提交
942

943 944 945 946 947 948 949
TEST_CPU_KERNEL(VRelu);
TEST_CPU_KERNEL(VIdentity);
TEST_CPU_KERNEL(VSquare);
TEST_CPU_KERNEL(VExp);
TEST_CPU_KERNEL(VSigmoid);
TEST_CPU_KERNEL(VTanh);
TEST_CPU_KERNEL(VCopy);
T
tensor-tang 已提交
950

951 952
TEST_CPU_KERNEL(HMax);
TEST_CPU_KERNEL(HSum);
T
tensor-tang 已提交
953

954 955
TEST_CPU_KERNEL(LSTMCtHt);
TEST_CPU_KERNEL(LSTMC1H1);
T
tensor-tang 已提交
956

957 958 959
TEST_CPU_KERNEL(GRUH1);
TEST_CPU_KERNEL(GRUHtPart1);
TEST_CPU_KERNEL(GRUHtPart2);
960

961 962 963
TEST_CPU_KERNEL(NCHW16CMulNC);
TEST_CPU_KERNEL(LayerNorm);
TEST_CPU_KERNEL(CRFDecoding);
964

965 966 967 968 969 970
TEST_CPU_KERNEL(SeqPool);
TEST_CPU_KERNEL(EmbSeqPool);
TEST_CPU_KERNEL(MatMul);
TEST_CPU_KERNEL(Softmax);
TEST_CPU_KERNEL(Sgd);
TEST_CPU_KERNEL(VBroadcast);
971

T
tensor-tang 已提交
972 973 974 975 976
TEST(JITKernel_key, lstm) {
  jit::lstm_attr_t attr1(8, jit::kVIdentity, jit::kVSigmoid, jit::kVTanh);
  jit::lstm_attr_t attr2(9, jit::kVIdentity, jit::kVSigmoid, jit::kVTanh);
  jit::lstm_attr_t attr3(9, jit::kVIdentity, jit::kVSigmoid, jit::kVTanh);
  jit::lstm_attr_t attr4(9, jit::kVRelu, jit::kVSigmoid, jit::kVTanh);
T
tensor-tang 已提交
977

T
tensor-tang 已提交
978 979 980 981
  auto key1 = jit::JitCodeKey<jit::lstm_attr_t>(attr1);
  auto key2 = jit::JitCodeKey<jit::lstm_attr_t>(attr2);
  auto key3 = jit::JitCodeKey<jit::lstm_attr_t>(attr3);
  auto key4 = jit::JitCodeKey<jit::lstm_attr_t>(attr4);
982

T
tensor-tang 已提交
983 984 985
  EXPECT_TRUE(key1 != key2);
  EXPECT_TRUE(key2 == key3);
  EXPECT_TRUE(key3 != key4);
986 987
}

T
tensor-tang 已提交
988 989 990 991 992
TEST(JITKernel_key, gru) {
  jit::gru_attr_t attr1(8, jit::kVSigmoid, jit::kVTanh);
  jit::gru_attr_t attr2(9, jit::kVSigmoid, jit::kVTanh);
  jit::gru_attr_t attr3(9, jit::kVSigmoid, jit::kVTanh);
  jit::gru_attr_t attr4(9, jit::kVSigmoid, jit::kVIdentity);
T
tensor-tang 已提交
993

T
tensor-tang 已提交
994 995 996 997
  auto key1 = jit::JitCodeKey<jit::gru_attr_t>(attr1);
  auto key2 = jit::JitCodeKey<jit::gru_attr_t>(attr2);
  auto key3 = jit::JitCodeKey<jit::gru_attr_t>(attr3);
  auto key4 = jit::JitCodeKey<jit::gru_attr_t>(attr4);
T
tensor-tang 已提交
998

T
tensor-tang 已提交
999 1000 1001
  EXPECT_TRUE(key1 != key2);
  EXPECT_TRUE(key2 == key3);
  EXPECT_TRUE(key3 != key4);
1002
}
1003 1004

TEST(JITKernel, kernel_func) {
1005 1006 1007
  auto f1 = jit::KernelFuncs<jit::VAddTuple<float>, CPUPlace>::Cache().At(3);
  auto f2 = jit::KernelFuncs<jit::VAddTuple<float>, CPUPlace>::Cache()[3];
  EXPECT_TRUE(f1 != nullptr);
1008
  EXPECT_TRUE(f1 == f2);
1009
  // TODO(TJ): check not equal
1010
}