creation.py 11.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
16
from paddle import _C_ops
17 18 19 20
from paddle.fluid.framework import core, dygraph_only
from paddle.fluid.framework import _current_expected_place, _get_paddle_place
from paddle.tensor import to_tensor, max
from paddle.fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
21

22 23
import numpy as np

24 25 26 27 28 29 30 31 32 33 34 35 36
__all__ = [
    'sparse_coo_tensor',
    'sparse_csr_tensor',
]


def _handle_dtype(data, dtype):
    if dtype:
        if convert_dtype(dtype) != convert_dtype(data.dtype):
            return data.astype(convert_dtype(dtype))
    return data


37
def _infer_dense_shape(indices, values):
38 39 40
    assert len(indices.shape) == 2
    lens = max(indices, axis=1)
    lens = lens + 1
41 42 43 44
    lens = lens.numpy()
    if len(values.shape) > 1:
        lens = np.append(lens, values.shape[1:])
    return list(lens)
45 46


47 48 49 50 51 52 53 54 55 56 57 58
def _get_place(place):
    place = _get_paddle_place(place)
    if place is None:
        place = _current_expected_place()
    elif not isinstance(place, (core.Place, core.CPUPlace, core.CUDAPinnedPlace,
                                core.CUDAPlace)):
        raise ValueError(
            "'place' must be any of paddle.Place, paddle.CPUPlace, paddle.CUDAPinnedPlace, paddle.CUDAPlace"
        )
    return place


59 60 61 62 63 64 65
def _check_indices_dtype(dtype):
    if dtype not in [paddle.int8, paddle.int16, paddle.int32, paddle.int64]:
        raise TypeError(
            "the dtype of indices must be 'int8' or 'int16' or 'int32' or 'int64'"
        )


66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
@dygraph_only
def sparse_coo_tensor(indices,
                      values,
                      shape=None,
                      dtype=None,
                      place=None,
                      stop_gradient=True):
    r"""
    Constructs a sparse ``paddle.Tensor`` in coordinate format according to the indices 
    and values of the specified non-zero elements.

    Args:
        indices(list|tuple|ndarray|Tensor): the indices of non-zero elements.
            Can be a list, tuple, numpy\.ndarray, paddle\.Tensor. The indices must be 2-D.
        values(list|tuple|ndarray|Tensor): Initial values for the tensor.
            Can be a scalar, list, tuple, numpy\.ndarray, paddle\.Tensor.
        shape(list|tuple, optional): The shape of the sparse tensor also represents the shape of
            original dense tensor. If not provided the smallest shape will be inferred to 
            hold all elements.
        dtype(str|np.dtype, optional): The desired data type of returned tensor. Can be 'bool' , 'float16' , 
            'float32' , 'float64' , 'int8' , 'int16' , 'int32' , 'int64' , 'uint8',
            'complex64' , 'complex128'. Default: None, infers dtype from ``data`` 
            except for python float number which gets dtype from ``get_default_type`` .
        place(CPUPlace|CUDAPinnedPlace|CUDAPlace|str, optional): The place to allocate Tensor. Can be  
            CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place. If ``place`` is 
            string, It can be ``cpu``, ``gpu:x`` and ``gpu_pinned``, where ``x`` is the index of the GPUs. 
        stop_gradient(bool, optional): Whether to block the gradient propagation of Autograd. Default: True.

    Returns:
        Tensor: A Tensor constructed from ``indices`` and ``values`` .

    Raises:
        TypeError: If the data type of ``values`` is not list, tuple, numpy.ndarray, paddle.Tensor
        ValueError: If ``values`` is tuple|list, it can't contain nested tuple|list with different lengths , such as: [[1, 2], [3, 4, 5]]. If the ``indices`` is not a 2-D. 
        TypeError: If ``dtype`` is not bool, float16, float32, float64, int8, int16, int32, int64, uint8, complex64, complex128
        ValueError: If ``place`` is not paddle.CPUPlace, paddle.CUDAPinnedPlace, paddle.CUDAPlace or specified pattern string. 

    Examples:

    .. code-block:: python

        import paddle
        from paddle.fluid.framework import _test_eager_guard

        with _test_eager_guard():
            indices = [[0, 1, 2], [1, 2, 0]]
            values = [1.0, 2.0, 3.0]
113
            dense_shape = [3, 3]
114
            coo = paddle.incubate.sparse.sparse_coo_tensor(indices, values, dense_shape)
115 116 117 118 119 120 121
            # print(coo)
            # Tensor(shape=[2, 3], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True,
            #       indices=[[0, 1, 2],
            #                [1, 2, 0]],
            #       values=[1., 2., 3.])
    """

122 123
    place = _get_place(place)

124 125 126 127 128 129 130
    if not isinstance(indices, core.eager.Tensor):
        indices = to_tensor(
            indices, dtype=None, place=place, stop_gradient=True)
    if not isinstance(values, core.eager.Tensor):
        values = to_tensor(values, dtype, place, stop_gradient)
    if len(indices.shape) != 2:
        raise ValueError("'indices' must be 2-D.")
131

132 133 134 135 136 137 138 139 140 141 142 143
    nnz = indices.shape[1]
    sparse_dim = indices.shape[0]

    _check_indices_dtype(indices.dtype)

    if nnz != values.shape[0]:
        raise ValueError(
            "the indices and values must have same number of non-zero, but get {} and {}".
            format(nnz, values.shape[0]))

    dense_dim = len(values.shape) - 1

144
    if not indices.place._equals(place):
145
        indices = indices._copy_to(place, False)
146 147

    if not values.place._equals(place):
148 149
        values = values._copy_to(place, False)
    values = _handle_dtype(values, dtype)
150 151
    values.stop_gradient = stop_gradient

152 153
    min_shape = _infer_dense_shape(indices, values)

154
    if shape is None:
155 156 157 158 159 160 161 162 163
        shape = min_shape
    else:
        if shape < min_shape:
            raise ValueError("the minimun shape required is {}, but get {}".
                             format(min_shape, shape))
        if len(shape) != sparse_dim + dense_dim:
            raise ValueError(
                "the number of dimensions(len(shape) must be sparse_dim({}) + dense_dim({}), but get {}".
                format(sparse_dim, dense_dim, len(shape)))
164 165 166

    return _C_ops.final_state_sparse_create_sparse_coo_tensor(values, indices,
                                                              shape)
167 168 169 170 171 172 173 174 175 176 177 178 179 180


#TODO: need to support shape is None
@dygraph_only
def sparse_csr_tensor(crows,
                      cols,
                      values,
                      shape,
                      dtype=None,
                      place=None,
                      stop_gradient=True):
    r"""
    Constructs a sparse ``paddle.Tensor`` in CSR(Compressed Sparse Row) format according to the 
    ``crows``, ``cols`` and ``values``.
181
    Currently, the crows and cols of each batch must be incrementd.
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223

    Args:
        crows(list|tuple|ndarray|Tensor): 1-D array, each element in the rows represents the 
            starting position of the first non-zero element of each row in values. 
            Can be a list, tuple, numpy\.ndarray, paddle\.Tensor. 
        cols(list|tuple|ndarray|Tensor): 1-D array, the column of non-zero elements.
            Can be a list, tuple, numpy\.ndarray, paddle\.Tensor. 
        values(list|tuple|ndarray|Tensor): 1-D array, the non-zero elements.
            Can be a scalar, list, tuple, numpy\.ndarray, paddle\.Tensor.
        shape(list|tuple, optional): The shape of the sparse tensor also represents the shape of
            original dense tensor. 
            hold all elements.
        dtype(str|np.dtype, optional): The desired data type of returned tensor. Can be 'bool' , 'float16' , 
            'float32' , 'float64' , 'int8' , 'int16' , 'int32' , 'int64' , 'uint8',
            'complex64' , 'complex128'. Default: None, infers dtype from ``data`` 
            except for python float number which gets dtype from ``get_default_type`` .
        place(CPUPlace|CUDAPinnedPlace|CUDAPlace|str, optional): The place to allocate Tensor. Can be  
            CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place. If ``place`` is 
            string, It can be ``cpu``, ``gpu:x`` and ``gpu_pinned``, where ``x`` is the index of the GPUs. 
        stop_gradient(bool, optional): Whether to block the gradient propagation of Autograd. Default: True.

    Returns:
        Tensor: A Tensor constructed from ``crows``, ``cols`` and ``values`` .

    Raises:
        TypeError: If the data type of ``values`` is not list, tuple, numpy.ndarray, paddle.Tensor
        ValueError: If ``values`` is tuple|list, it can't contain nested tuple|list with different lengths , such as: [[1, 2], [3, 4, 5]]. If the ``crow``, ``cols`` and ``values`` is not a 2-D. 
        TypeError: If ``dtype`` is not bool, float16, float32, float64, int8, int16, int32, int64, uint8, complex64, complex128
        ValueError: If ``place`` is not paddle.CPUPlace, paddle.CUDAPinnedPlace, paddle.CUDAPlace or specified pattern string. 

    Examples:

    .. code-block:: python

        import paddle
        from paddle.fluid.framework import _test_eager_guard

        with _test_eager_guard():
            crows = [0, 2, 3, 5]
            cols = [1, 3, 2, 0, 1]
            values = [1, 2, 3, 4, 5]
            dense_shape = [3, 4]
224
            csr = paddle.incubate.sparse.sparse_csr_tensor(crows, cols, values, dense_shape)
225 226 227 228 229 230
            # print(csr)
            # Tensor(shape=[3, 4], dtype=paddle.int64, place=Place(gpu:0), stop_gradient=True,
            #       crows=[0, 2, 3, 5],
            #       cols=[1, 3, 2, 0, 1],
            #       values=[1, 2, 3, 4, 5])
    """
231 232 233

    place = _get_place(place)

234 235 236 237 238 239
    if not isinstance(crows, core.eager.Tensor):
        crows = to_tensor(crows, dtype=None, place=place, stop_gradient=True)
    if not isinstance(cols, core.eager.Tensor):
        cols = to_tensor(cols, dtype=None, place=place, stop_gradient=True)
    if not isinstance(values, core.eager.Tensor):
        values = to_tensor(values, dtype, place, stop_gradient)
240 241 242 243 244

    _check_indices_dtype(crows.dtype)
    _check_indices_dtype(cols.dtype)

    if len(shape) != 2 and len(shape) != 3:
245
        raise ValueError(
246 247
            "SparseCsrTensor only support 2-D or 3-D matrix. but get shape {}".
            format(shape))
248

249
    if not crows.place._equals(place):
250
        crows = crows._copy_to(place, False)
251 252

    if not cols.place._equals(place):
253
        cols = cols._copy_to(place, False)
254 255

    if not values.place._equals(place):
256 257
        values = values._copy_to(place, False)
    values = _handle_dtype(values, dtype)
258
    values.stop_gradient = stop_gradient
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283

    if len(crows.shape) != 1 or len(cols.shape) != 1 or len(values.shape) != 1:
        raise ValueError("The 'crows', 'cols' and 'values' must be 1-D.")

    if (len(cols) != len(values)):
        raise ValueError("the length of cols must be same as length of values")

    if len(shape) == 2:
        if crows.shape[0] != shape[0] + 1:
            raise ValueError(
                "The length({}) of crows must be equal to the rows({})+1 of matrix.".
                format(crows.shape[0], shape[0]))
        if crows[0] != 0:
            raise ValueError("the 0th value of crows must be 0")

        if crows[-1] != values.shape[0]:
            raise ValueError(
                "the last value of crows must be equal the number of non-zero")
    else:
        if crows.shape[0] % (shape[0] + 1) != 0:
            raise ValueError(
                "The length({}) of crows must be divisible the rows({})+1 of matrix.".
                format(crows.shape[0], shape[0]))
    # TODO(zkh2016): check whether the value in crows and cols is legal 

284 285
    return core.eager.sparse_csr_tensor(crows, cols, values, shape,
                                        stop_gradient)