backward.yaml 8.5 KB
Newer Older
1
- backward_api : matmul_grad
Z
zyfncg 已提交
2 3
  forward : matmul (Tensor x, Tensor y, bool transpose_x=false, bool transpose_y=false) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, bool transpose_x=false, bool transpose_y=false)
4 5
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
6 7
    func : GeneralBinaryGradInferMeta
    param : [x, y]
8 9 10
  kernel :
    func : matmul_grad

11 12 13 14 15 16 17 18 19 20 21
- backward_api : matmul_double_grad
  forward : matmul_grad (Tensor x, Tensor y, Tensor out_grad, bool transpose_x, bool transpose_y) -> Tensor(dx), Tensor(dy)
  args : (Tensor x, Tensor y, Tensor out_grad, Tensor dx_grad, Tensor dy_grad, bool transpose_x, bool transpose_y)
  output : Tensor(d2x), Tensor(d2y), Tensor(dout_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [x, y, out_grad]
  kernel :
    func : matmul_double_grad
  optional : dx_grad, dy_grad

22
- backward_api : scale_grad
Z
zyfncg 已提交
23 24
  forward : scale (Tensor x, Scalar scale, float bias, bool bias_after_scale) -> Tensor(out)
  args : (Tensor out_grad, Scalar scale, float bias=0.0, bool bias_after_scale=true)
25 26 27
  output : Tensor(x_grad)
  invoke : scale(out_grad, scale, bias, bias_after_scale)

H
hong 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
- backward_api : digamma_grad
  forward : digamma (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : digamma_grad

- backward_api : abs_grad
  forward : abs (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : abs_grad

- backward_api : trunc_grad
  forward : trunc (Tensor x) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out_grad]
  kernel :
    func : trunc_grad

# - backward_api : norm_grad
#   forward : norm (Tensor x, int axis, float epsilon, bool is_test) -> Tensor(out), Tensor(norm)
#   args : (Tensor out_grad, Tensor x, Tensor norm, int axis, float epsilon, bool is_test)
#   output : Tensor(x_grad)
#   infer_meta :
#     func : UnchangedInferMeta
#     param : [x]
#   kernel :
#     func : norm_grad

- backward_api : diagonal_grad
  forward : diagonal (Tensor x, int offset, int axis1, int axis2) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, int offset = 0, int axis1 = 0, int axis2 = 1)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : diagonal_grad

# - backward_api : split_grad
#   forward : split (Tensor x, ScalarArray num_or_sections, Scalar axis) -> Tensor[](out)
#   args : (Tensor[] out_grad, Scalar axis)
#   output : Tensor(x_grad)    
#   invoke : concat( out_grad, axis)
83 84 85
# TODO(zhangyunfei) The config of double grad and triple grad will be supported in the future.

# - backward_api : matmul_triple_grad
Z
zyfncg 已提交
86 87 88
#   forward : matmul_double_grad (Tensor x, Tensor y, Tensor out_grad, Tensor dx_grad, Tensor dy_grad, bool transpose_x, bool transpose_y) -> Tensor(d2x), Tensor(d2y), Tensor(dout_grad)
#   args : (Tensor x, Tensor y, Tensor out_grad, Tensor dx_grad, Tensor dy_grad, Tensor d2x_grad, Tensor d2y_grad, Tensor dout_grad_grad, bool transpose_x, bool transpose_y)
#   output : Tensor(d3x), Tensor(d3y), Tensor(d2out_grad), Tensor(ddx_grad), Tensor(ddy_grad)
89 90 91 92
#   infer_meta :
#     func : MatmulTripleGradInferMeta
#   kernel :
#     func : matmul_triple_grad
P
phlrain 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293

- backward_api : softmax_grad
  forward : softmax (Tensor x, int axis) -> Tensor(out)
  args : (Tensor out, Tensor out_grad, int axis)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : softmax_grad

- backward_api : maxout_grad
  forward : maxout (Tensor x, int groups, int axis) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int groups, int axis)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : maxout_grad


- backward_api : put_along_axis_grad
  forward : put_along_axis (Tensor x, Tensor index, Tensor value, int axis, string reduce) -> Tensor(out)
  args : (Tensor x, Tensor index, Tensor out_grad, int axis, string reduce)
  output : Tensor(x_grad), Tensor(value_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, valule]
  kernel :
    func : put_along_axis_grad

- backward_api : take_along_axis_grad
  forward : take_along_axis (Tensor x, Tensor index, int axis) -> Tensor(out)
  args : (Tensor x, Tensor index, Tensor out_grad, int axis)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : take_along_axis_grad

- backward_api : maxtrix_power_grad
  forward : maxtrix_power (Tensor x, int n) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int n)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : maxtrix_power_grad
  
- backward_api : eigh_grad
  forward : eigh (Tensor x, string uplo) -> Tensor(out_w), Tensor(out_v)
  args : (Tensor out_w, Tensor out_v, Tensor outw_grad, Tensor outv_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : XXXXXXXInferMeta
    param : [x]
  kernel :
    func : eigh_grad

- backward_api : segment_pool_grad
  forward : segment_pool (Tensor x, Tensor segment_ids, string pooltype) -> Tensor(out), Tensor(summed_ids)
  args : (Tensor x, Tensor segment_ids, Tensor out, Tensor summed_ids, Tenosr out_grad, string pooltype)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : segment_pool_grad

- backward_api : cos_grad
  forward : cos (Tensor x) -> Tensor(out)
  args : (Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : cos_grad

- backward_api : tan_grad
  forward : tan (Tensor x) -> Tensor(out)
  args : (Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : tam_grad

- backward_api : acos_grad
  forward : acos (Tensor x) -> Tensor(out)
  args : (Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : acos_grad

- backward_api : sin_grad
  forward : sin (Tensor x) -> Tensor(out)
  args : (Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : sin_grad

- backward_api : asin_grad
  forward : asin (Tensor x) -> Tensor(out)
  args : (Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : asin_grad

- backward_api : atan_grad
  forward : atan (Tensor x) -> Tensor(out)
  args : (Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : atan_grad
  
- backward_api : sinh_grad
  forward : sinh (Tensor x) -> Tensor(out)
  args : (Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : sinh_grad

- backward_api : cosh_grad
  forward : cosh (Tensor x) -> Tensor(out)
  args : (Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : cosh_grad

- backward_api : asinh_grad
  forward : asinh (Tensor x) -> Tensor(out)
  args : (Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : asinh_grad

- backward_api : acosh_grad
  forward : acosh (Tensor x) -> Tensor(out)
  args : (Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : acosh_grad
  
- backward_api : atanh_grad
  forward : atanh (Tensor x) -> Tensor(out)
  args : (Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : atanh_grad

- backward_api : relu_grad
  forward : relu (Tensor x) -> Tensor(out)
  args : (Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : relu_grad

- backward_api : argsort_grad
  forward : argsort (Tensor x, int axis, bool descending) -> Tensor(out), tensor(indices)
  args : (Tensor indices, Tensor x, Tensor out_grad, int axis, bool descending)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : argsort_grad