test_LayerGrad.cpp 47.8 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <gtest/gtest.h>
#include <string>
Q
qijun 已提交
17
#include <vector>
Z
zhangjinchao01 已提交
18
#include "ModelConfig.pb.h"
Q
qijun 已提交
19
#include "paddle/gserver/layers/DataLayer.h"
Z
zhangjinchao01 已提交
20
#include "paddle/trainer/Trainer.h"
21
#include "paddle/math/MathUtils.h"
Z
zhangjinchao01 已提交
22 23

#include "LayerGradUtil.h"
Q
qijun 已提交
24
#include "TestUtil.h"
Z
zhangjinchao01 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

using namespace paddle;  // NOLINT
using namespace std;     // NOLINT

P_DECLARE_bool(use_gpu);
P_DECLARE_int32(gpu_id);
P_DECLARE_double(checkgrad_eps);
P_DECLARE_bool(thread_local_rand_use_global_seed);
P_DECLARE_bool(prev_batch_state);

TEST(Operator, dot_mul) {
  TestConfig config;
  config.layerConfig.set_size(10);

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 10, 0});
  config.inputDefs.push_back({INPUT_DATA, "layer_1", 10, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  OperatorConfig& operatorConf = *config.layerConfig.add_operator_confs();
  operatorConf.set_type("dot_mul");
  operatorConf.set_dotmul_scale(-1);

  testOperatorGrad(config, operatorConf, 100, false, false);
}

TEST(Projection, context) {
  for (auto contextStart : {-5, -3, -1, 0, 3}) {
    for (auto contextLength : {1, 2, 5, 7}) {
54
      for (auto batchSize : {1, 2, 5, 20, 50}) {
Z
zhangjinchao01 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
        for (auto trainablePadding : {false, true}) {
          LOG(INFO) << " contextStart=" << contextStart
                    << " contextLength=" << contextLength
                    << " batchSize=" << batchSize
                    << " trainablePadding=" << trainablePadding;
          ProjectionConfig conf;
          conf.set_type("context");
          conf.set_input_size(10);
          conf.set_context_start(contextStart);
          conf.set_context_length(contextLength);
          conf.set_trainable_padding(trainablePadding);
          conf.set_output_size(conf.context_length() * conf.input_size());
          int pad =
              std::max(0, -conf.context_start()) +
              std::max(0, conf.context_start() + conf.context_length() - 1);
          for (auto useGpu : {false, true}) {
            testProjectionGrad(
72 73 74 75
                conf,
                INPUT_SEQUENCE_DATA,
                trainablePadding ? conf.input_size() * pad : 0,
                batchSize,
Z
zhangjinchao01 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
                useGpu,
                contextStart + contextLength <= 1);  // = testState
          }
        }
      }
    }
  }
}

TEST(Projection, trans_fc) {
  ProjectionConfig conf;
  conf.set_type("trans_fc");
  conf.set_input_size(50);
  conf.set_output_size(20);
  for (auto useGpu : {false, true}) {
91 92 93 94 95
    testProjectionGrad(conf,
                       INPUT_DATA,
                       /* parameterSize */ 1000,
                       /* batchSize */ 100,
                       useGpu);
Z
zhangjinchao01 已提交
96 97 98 99 100 101 102 103 104
  }
}

TEST(Projection, fc) {
  ProjectionConfig conf;
  conf.set_type("fc");
  conf.set_input_size(10);
  conf.set_output_size(20);
  for (auto useGpu : {false, true}) {
105 106 107 108 109
    testProjectionGrad(conf,
                       INPUT_DATA,
                       /* parameterSize */ 200,
                       /* batchSize */ 100,
                       useGpu);
Z
zhangjinchao01 已提交
110 111 112 113 114 115 116 117 118
  }
}

TEST(Projection, dot_mul) {
  ProjectionConfig conf;
  conf.set_type("dot_mul");
  conf.set_input_size(20);
  conf.set_output_size(20);
  for (auto useGpu : {false, true}) {
119 120 121 122 123
    testProjectionGrad(conf,
                       INPUT_DATA,
                       /* parameterSize */ 20,
                       /* batchSize */ 100,
                       useGpu);
Z
zhangjinchao01 已提交
124 125 126 127 128 129 130 131 132
  }
}

TEST(Projection, table) {
  ProjectionConfig conf;
  conf.set_type("table");
  conf.set_input_size(10);
  conf.set_output_size(20);
  for (auto useGpu : {false, true}) {
133 134 135 136 137
    testProjectionGrad(conf,
                       INPUT_LABEL,
                       /* parameterSize */ 200,
                       /* batchSize */ 100,
                       useGpu);
Z
zhangjinchao01 已提交
138 139 140 141 142 143 144 145 146
  }
}

TEST(Projection, identity) {
  ProjectionConfig conf;
  conf.set_type("identity");
  conf.set_input_size(10);
  conf.set_output_size(10);
  for (auto useGpu : {false, true}) {
147 148 149 150 151
    testProjectionGrad(conf,
                       INPUT_DATA,
                       /* parameterSize */ 0,
                       /* batchSize */ 100,
                       useGpu);
Z
zhangjinchao01 已提交
152 153 154
  }
}

X
xuwei06 已提交
155 156 157 158 159 160
TEST(Projection, scaling) {
  ProjectionConfig conf;
  conf.set_type("scaling");
  conf.set_input_size(10);
  conf.set_output_size(10);
  for (auto useGpu : {false}) {
161 162 163 164 165
    testProjectionGrad(conf,
                       INPUT_DATA,
                       /* parameterSize */ 1,
                       /* batchSize */ 100,
                       useGpu);
X
xuwei06 已提交
166 167 168
  }
}

169 170
void testProjectionConv(size_t groups) {
  const int NUM_FILTERS = 18;
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
  const int FILTER_SIZE = 2;
  const int FILTER_SIZE_Y = 3;
  const int CHANNELS = 3;
  const int IMAGE_SIZE = 16;

  ProjectionConfig conf;
  conf.set_type("conv");
  conf.set_num_filters(NUM_FILTERS);

  ConvConfig* conv = conf.mutable_conv_conf();
  conv->set_filter_size(FILTER_SIZE);
  conv->set_filter_size_y(FILTER_SIZE_Y);
  conv->set_channels(CHANNELS);
  conv->set_padding(0);
  conv->set_padding_y(1);
  conv->set_stride(2);
  conv->set_stride_y(2);
188
  conv->set_groups(groups);
189 190
  conv->set_filter_channels(conv->channels() / conv->groups());
  conv->set_img_size(IMAGE_SIZE);
191 192 193 194 195 196 197 198 199 200
  int output_x = outputSize(conv->img_size(),
                            conv->filter_size(),
                            conv->padding(),
                            conv->stride(),
                            /* caffeMode */ true);
  int output_y = outputSize(conv->img_size(),
                            conv->filter_size_y(),
                            conv->padding_y(),
                            conv->stride_y(),
                            /* caffeMode */ true);
201
  conv->set_output_x(output_x);
202
  conf.set_input_size(IMAGE_SIZE * IMAGE_SIZE * CHANNELS);
203
  conf.set_output_size(output_x * output_y * NUM_FILTERS);
204

205
  testProjectionGrad(
206 207
      conf,
      INPUT_DATA,
208 209
      /* parameterSize */ NUM_FILTERS * CHANNELS * FILTER_SIZE * FILTER_SIZE_Y
                          / groups,
210 211 212 213 214
      /* batchSize */ 100,
      true,
      false,
      NUM_FILTERS,
      true);
215
}
216

217 218 219 220
#ifndef PADDLE_ONLY_CPU
TEST(Projection, conv) {
  testProjectionConv(1);
  testProjectionConv(3);
221
}
222 223
#endif

L
Update  
liaogang 已提交
224 225 226 227 228 229
TEST(Layer, BilinearInterpLayer) {
  TestConfig config;
  config.layerConfig.set_type("bilinear_interp");
  config.biasSize = 0;
  config.inputDefs.push_back({INPUT_DATA, "layer_0", 4096, 0});

L
liaogang 已提交
230 231 232 233 234 235
  LayerInputConfig* input = config.layerConfig.add_inputs();
  BilinearInterpConfig* bilinear = input->mutable_bilinear_interp_conf();
  bilinear->set_img_size_x(32);
  bilinear->set_img_size_y(32);
  bilinear->set_num_channels(4);

L
liaogang 已提交
236 237 238 239 240 241 242
  for (auto useGpu : {false, true}) {
    for (auto outSize : {32, 64}) {
      bilinear->set_out_size_x(outSize);
      bilinear->set_out_size_y(outSize);
      testLayerGrad(config, "bilinear_interp", 10, false, useGpu);
    }
  }
L
Update  
liaogang 已提交
243 244
}

Z
zhangjinchao01 已提交
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
TEST(Layer, concat) {
  TestConfig config;
  config.biasSize = 0;
  config.layerConfig.set_type("concat");
  config.layerConfig.set_size(15);
  config.layerConfig.set_active_type("sigmoid");

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 5, 0});
  config.layerConfig.add_inputs();
  config.inputDefs.push_back({INPUT_DATA, "layer_1", 10, 0});
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "concat", 100, false, useGpu);
  }
}

TEST(Layer, AddtoLayer) {
  TestConfig config;
  config.biasSize = 0;
  config.layerConfig.set_type("addto");
  config.layerConfig.set_size(10);
  config.layerConfig.set_active_type("sigmoid");

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 10, 0});
  config.layerConfig.add_inputs();
  config.inputDefs.push_back({INPUT_DATA, "layer_1", 10, 0});
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "addto", 100, false, useGpu);
  }
}

TEST(Layer, CTCLayer) {
  TestConfig config;
  config.layerConfig.set_type("ctc");
  config.layerConfig.set_norm_by_times(false);
  config.layerConfig.set_size(10);
  config.biasSize = 0;

  config.inputDefs.push_back({INPUT_SEQUENCE_DATA, "layer_0", 10, 0});
  config.inputDefs.push_back({INPUT_SEQUENCE_LABEL, "layer_1", 10, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "ctc", 100, /* trans */ false, /* useGpu */ useGpu);
  }
}

TEST(Layer, cosSimLayer) {
  TestConfig config;
  config.layerConfig.set_type("cos");
  config.layerConfig.set_size(1);
  config.biasSize = 0;

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 50, 0});
  config.inputDefs.push_back({INPUT_DATA, "layer_1", 50, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "cos", 100, false, useGpu);
  }
}

TEST(Layer, CosSimVecMatLayer) {
  TestConfig config;
  config.layerConfig.set_type("cos_vm");
  config.layerConfig.set_size(5);  // output size
  config.layerConfig.set_cos_scale(2.0);

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 20, 0});
  config.layerConfig.add_inputs();
  config.inputDefs.push_back({INPUT_DATA, "layer_1", 100, 0});
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "cos_vm", 100, false, useGpu);
  }
}

void testConvLayer(const string& type, bool trans, bool useGpu) {
  TestConfig config;
  config.biasSize = 16;
  config.layerConfig.set_type(type);
  config.layerConfig.set_num_filters(16);
  config.layerConfig.set_partial_sum(1);
  config.layerConfig.set_shared_biases(true);

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 768, 288});
  LayerInputConfig* input = config.layerConfig.add_inputs();
  ConvConfig* conv = input->mutable_conv_conf();
  conv->set_filter_size(2);
  conv->set_filter_size_y(3);
  conv->set_channels(3);
  conv->set_padding(0);
  conv->set_padding_y(1);
  conv->set_stride(2);
  conv->set_stride_y(2);
  conv->set_groups(1);
  conv->set_filter_channels(conv->channels() / conv->groups());
  conv->set_img_size(16);
349 350 351 352
  conv->set_output_x(outputSize(conv->img_size(),
                                conv->filter_size(),
                                conv->padding(),
                                conv->stride(),
353
                                /* caffeMode */ true));
Z
zhangjinchao01 已提交
354 355 356 357
  config.layerConfig.set_size(conv->output_x() * conv->output_x() *
                              config.layerConfig.num_filters());

  testLayerGrad(config, "conv", 100, trans, useGpu);
358 359
  // Use small batch_size and useWeight=true to test biasGrad
  testLayerGrad(config, "conv", 2, trans, useGpu, true, 0.02);
Z
zhangjinchao01 已提交
360 361 362 363 364 365 366 367 368 369
}

TEST(Layer, convLayer) {
  testConvLayer("exconv", /* trans= */ false, /* useGpu= */ false);
#ifndef PADDLE_ONLY_CPU
  testConvLayer("exconv", /* trans= */ false, /* useGpu= */ true);
  testConvLayer("cudnn_conv", /* trans= */ false, /* useGpu= */ true);
#endif
}

W
wangyang59 已提交
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
void testConvTransLayer(const string& type, bool trans, bool useGpu) {
  TestConfig config;
  config.biasSize = 3;
  config.layerConfig.set_type(type);
  config.layerConfig.set_num_filters(3);
  config.layerConfig.set_partial_sum(1);
  config.layerConfig.set_shared_biases(true);

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 1024, 288});
  LayerInputConfig* input = config.layerConfig.add_inputs();
  ConvConfig* conv = input->mutable_conv_conf();
  conv->set_filter_size(2);
  conv->set_filter_size_y(3);
  conv->set_channels(16);
  conv->set_padding(0);
  conv->set_padding_y(1);
  conv->set_stride(2);
  conv->set_stride_y(2);
  conv->set_groups(1);
  conv->set_filter_channels(3 / conv->groups());
  conv->set_img_size(16);
391 392 393 394
  conv->set_output_x(outputSize(conv->img_size(),
                                conv->filter_size(),
                                conv->padding(),
                                conv->stride(),
395
                                /* caffeMode */ true));
W
wangyang59 已提交
396 397 398 399 400

  config.layerConfig.set_size(conv->img_size() * conv->img_size() *
                              config.layerConfig.num_filters());

  testLayerGrad(config, "convTrans", 100, trans, useGpu);
401 402
  // Use small batch_size and useWeight=true to test biasGrad
  testLayerGrad(config, "convTrans", 2, trans, useGpu, true, 0.02);
W
wangyang59 已提交
403 404 405
}

TEST(Layer, convTransLayer) {
406 407 408
  for (auto useGpu : {false, true}) {
    testConvTransLayer("exconvt", /* trans= */ false, /* useGpu= */ useGpu);
  }
W
wangyang59 已提交
409 410
}

Z
zhangjinchao01 已提交
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
TEST(Layer, blockExpandLayer) {
  TestConfig config;
  config.biasSize = 0;
  config.layerConfig.set_type("blockexpand");

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 6144, 0});
  LayerInputConfig* input = config.layerConfig.add_inputs();
  BlockExpandConfig* blockExpand = input->mutable_block_expand_conf();
  blockExpand->set_img_size_x(64);
  blockExpand->set_img_size_y(32);
  blockExpand->set_channels(3);
  blockExpand->set_padding_x(0);
  blockExpand->set_padding_y(0);
  blockExpand->set_block_x(4);
  blockExpand->set_block_y(32);
  blockExpand->set_stride_x(2);
  blockExpand->set_stride_y(2);
428 429 430 431 432 433 434 435 436 437
  blockExpand->set_output_x(outputSize(blockExpand->img_size_x(),
                                       blockExpand->block_x(),
                                       blockExpand->padding_x(),
                                       blockExpand->stride_x(),
                                       /* caffeMode */ false));
  blockExpand->set_output_y(outputSize(blockExpand->img_size_y(),
                                       blockExpand->block_y(),
                                       blockExpand->padding_y(),
                                       blockExpand->stride_y(),
                                       /* caffeMode */ false));
Z
zhangjinchao01 已提交
438 439 440 441 442 443 444 445
  config.layerConfig.set_size(blockExpand->block_x() * blockExpand->block_y() *
                              blockExpand->channels());

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "blockexpand", 100, false, useGpu);
  }
}

446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
TEST(Layer, maxoutLayer) {
  TestConfig config;
  config.biasSize = 0;
  config.layerConfig.set_type("maxout");

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 4096, 0});
  LayerInputConfig* input = config.layerConfig.add_inputs();
  MaxOutConfig* maxout = input->mutable_maxout_conf();

  maxout->set_img_size_x(32);
  maxout->set_img_size_y(32);
  maxout->set_channels(4);
  maxout->set_groups(2);

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "maxout", 10, false, useGpu);
  }
}
Z
zhangjinchao01 已提交
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
void testFcLayer(string format, size_t nnz) {
  TestConfig config;
  config.biasSize = 4096;
  config.layerConfig.set_type("fc");
  config.layerConfig.set_size(4096);
  config.layerConfig.set_active_type("sigmoid");
  config.layerConfig.set_drop_rate(0.1);

  config.inputDefs.push_back(
      {INPUT_DATA, "layer_0", 8192, nnz, ParaSparse(format)});
  config.layerConfig.add_inputs();

  LOG(INFO) << config.inputDefs[0].sparse.sparse << " "
            << config.inputDefs[0].sparse.format;

  for (auto useGpu : {false, true}) {
480 481 482 483 484
    testLayerGrad(config,
                  "fc",
                  100,
                  /* trans */ false,
                  useGpu,
Z
zhangjinchao01 已提交
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
                  /* weight */ true);
  }
}

TEST(Layer, fcLayer) {
  testFcLayer("", 4096 * 4096 * 2);
  testFcLayer("csc", 4096 * 40);
  testFcLayer("csr", 4096 * 40);
}

TEST(Layer, SelectiveFullyConnectedLayer) {
  TestConfig config;
  size_t nin = 16;
  size_t nout = 256;
  config.layerConfig.set_type("selective_fc");
  config.layerConfig.set_size(nout);
  config.layerConfig.set_active_type("sigmoid");
  config.layerConfig.set_has_selected_colums(true);
  config.layerConfig.set_selective_fc_pass_generation(false);
  config.biasSize = nout;

  config.inputDefs.push_back({INPUT_DATA, "input0", nin, nin * nout});
  config.layerConfig.add_inputs();
  config.inputDefs.push_back(
      {INPUT_SPARSE_NON_VALUE_DATA, "index", nout, 0, ParaSparse("csr", true)});
  config.layerConfig.add_inputs();

512 513 514 515 516 517
  testLayerGrad(config,
                "selective_fc",
                100,
                /* trans= */ false,
                /* useGup= */ false,
                false);
Z
zhangjinchao01 已提交
518
#ifndef PADDLE_ONLY_CPU
519 520 521 522 523 524
  testLayerGrad(config,
                "selective_fc",
                100,
                /* trans= */ false,
                /* useGup= */ true,
                false);
Z
zhangjinchao01 已提交
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
#endif
}

TEST(Layer, DataNormLayer) {
  TestConfig config;
  config.layerConfig.set_type("data_norm");
  config.layerConfig.set_size(20);
  config.biasSize = 0;

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 20, 100});
  config.inputDefs.back().isStatic = true;
  config.layerConfig.add_inputs();

  for (auto strategy : {"z-score", "min-max", "decimal-scaling"}) {
    config.layerConfig.set_data_norm_strategy(strategy);
    // The parameters are static, so not support GPU now
541 542 543 544
    testLayerGrad(config,
                  "data_norm",
                  200,
                  /* trans */ false,
Z
zhangjinchao01 已提交
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
                  /* useGpu */ false);
  }
}

TEST(Layer, hsigmoidLayer) {
  TestConfig config;
  config.layerConfig.set_type("hsigmoid");
  config.layerConfig.set_num_classes(5);
  config.layerConfig.set_size(1);
  config.biasSize = config.layerConfig.num_classes() - 1;

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 50, 200});
  config.inputDefs.push_back({INPUT_LABEL, "layer_1", 5, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  // Not support GPU now
  testLayerGrad(config, "hsigmoid", 100, /* trans */ false, /* useGpu */ false);
}

TEST(Layer, multi_cross) {
  TestConfig config;
  config.layerConfig.set_type("multi-class-cross-entropy");
  config.biasSize = 0;

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 50, 0});
  config.inputDefs.push_back({INPUT_LABEL, "layer_1", 10, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
576 577
    testLayerGrad(
        config, "multi-class-cross-entropy", 100, /* trans */ false, useGpu);
Z
zhangjinchao01 已提交
578 579 580
  }
}

H
Haonan 已提交
581
TEST(Layer, multi_binary_label_sparse_mat) {
Z
zhangjinchao01 已提交
582 583 584 585 586 587 588 589 590
  TestConfig config;
  config.layerConfig.set_type("multi_binary_label_cross_entropy");
  config.biasSize = 0;

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 50, 0});
  config.inputDefs.push_back({INPUT_SPARSE_NON_VALUE_DATA, "layer_1", 50, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

591
  for (auto useGpu : {false, true}) {
592 593 594 595 596
    testLayerGrad(config,
                  "multi_binary_label_cross_entropy",
                  100,
                  /* trans */ false,
                  useGpu);
597
  }
Z
zhangjinchao01 已提交
598 599
}

H
Haonan 已提交
600 601 602 603 604 605 606 607 608 609 610
TEST(layer, multi_binary_label_id) {
  TestConfig config;
  config.layerConfig.set_type("multi_binary_label_cross_entropy");
  config.biasSize = 0;

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 50, 0});
  config.inputDefs.push_back({INPUT_LABEL, "layer_1", 10, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
611 612 613 614 615
    testLayerGrad(config,
                  "multi_binary_label_cross_entropy",
                  100,
                  /* trans */ false,
                  useGpu);
H
Haonan 已提交
616 617 618
  }
}

Z
zhangjinchao01 已提交
619 620 621 622 623 624 625 626 627 628 629 630
TEST(Layer, multi_cross_with_selfnorm) {
  TestConfig config;
  config.layerConfig.set_type("multi_class_cross_entropy_with_selfnorm");
  config.layerConfig.set_softmax_selfnorm_alpha(0.1);
  config.biasSize = 0;

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 50, 0});
  config.inputDefs.push_back({INPUT_LABEL, "layer_1", 10, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  // Not support GPU now
631 632 633
  testLayerGrad(config,
                "multi_class_cross_entropy_with_selfnorm",
                100,
Z
zhangjinchao01 已提交
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
                /* trans */ false,
                /* useGpu */ false);
}

TEST(Layer, multi_cross_soft) {
  TestConfig config;
  config.layerConfig.set_type("soft_binary_class_cross_entropy");
  config.biasSize = 0;

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 10, 0});
  config.inputDefs.push_back({INPUT_DATA_TARGET, "layer_1", 10, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
649 650 651 652 653
    testLayerGrad(config,
                  "soft_binary_class_cross_entropy",
                  100,
                  /* trans */ false,
                  useGpu);
Z
zhangjinchao01 已提交
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
  }
}

TEST(Layer, square_error) {
  TestConfig config;
  config.layerConfig.set_type("square_error");
  config.biasSize = 0;

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 10, 0});
  config.inputDefs.push_back({INPUT_DATA_TARGET, "layer_1", 10, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "square_error", 100, /* trans */ false, useGpu);
  }
}

TEST(Layer, sparse_square_error) {
  TestConfig config;
  config.layerConfig.set_type("square_error");
  config.biasSize = 0;

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 50, 0});
  config.inputDefs.push_back({INPUT_SPARSE_NON_VALUE_DATA, "layer_1", 50, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  // "GpuSparseMatrix" as label is not supported
683 684 685 686
  testLayerGrad(config,
                "square_error",
                100,
                /* trans */ false,
Z
zhangjinchao01 已提交
687 688 689 690 691 692 693 694 695 696 697 698 699 700
                /* useGpu */ false);
}

TEST(Layer, sparse_float_square_error) {
  TestConfig config;
  config.layerConfig.set_type("square_error");
  config.biasSize = 0;

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 50, 0});
  config.inputDefs.push_back({INPUT_SPARSE_FLOAT_VALUE_DATA, "layer_1", 50, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  // "GpuSparseMatrix" as label is not supported
701 702 703 704
  testLayerGrad(config,
                "square_error",
                100,
                /* trans */ false,
Z
zhangjinchao01 已提交
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
                /* useGpu */ false);
}

TEST(Layer, square_error_weighted) {
  TestConfig config;
  config.layerConfig.set_type("square_error");
  config.biasSize = 0;
  config.testAccumulate = false;

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 10, 0});
  config.inputDefs.push_back({INPUT_DATA_TARGET, "layer_1", 10, 0});
  config.inputDefs.push_back({INPUT_DATA_TARGET, "layer_2", 1, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "square_error", 100, /* trans */ false, useGpu);
  }
}

TEST(Layer, huber_two_class) {
  TestConfig config;
  config.layerConfig.set_type("huber");
  config.biasSize = 0;

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 1, 0});
  config.inputDefs.push_back({INPUT_LABEL, "layer_1", 2, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "huber", 100, /* trans */ false, useGpu);
  }
}

void testExpandLayer(string trans_type, bool hasSubseq) {
  TestConfig config;
  config.layerConfig.set_type("expand");

  config.inputDefs.push_back(
      {trans_type == "non-seq" ? INPUT_DENSE_DIM_DATA : INPUT_SEQUENCE_DATA,
747 748 749
       "layer_0",
       10,
       0});
Z
zhangjinchao01 已提交
750
  config.inputDefs.push_back(
751 752 753 754
      {hasSubseq ? INPUT_HASSUB_SEQUENCE_DATA : INPUT_SEQUENCE_DATA,
       "layer_1",
       10,
       0});
Z
zhangjinchao01 已提交
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();
  config.layerConfig.set_trans_type(trans_type);
  LOG(INFO) << " trans_type=" << trans_type << " hasSubseq=" << hasSubseq;

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "expand", 30, false, useGpu);
  }
}

TEST(Layer, ExpandLayer) {
  testExpandLayer("non-seq", false);  // non-seq expand to seq
  testExpandLayer("non-seq", true);   // non-seq expand to hasSubseq
  testExpandLayer("seq", true);       // seq expand to hasSubseq
}

void testDegradeLayer(bool hasSubseq, string layer_type, string trans_type) {
  TestConfig config;
  config.layerConfig.set_type(layer_type);
  config.layerConfig.set_size(10);
  config.biasSize = 0;

  config.inputDefs.push_back(
778 779 780 781
      {hasSubseq ? INPUT_HASSUB_SEQUENCE_DATA : INPUT_SEQUENCE_DATA,
       "layer_0",
       10,
       0});
Z
zhangjinchao01 已提交
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
  config.layerConfig.add_inputs();
  config.layerConfig.set_trans_type(trans_type);

  auto testDegradeLayerGrad = [](TestConfig& config, string layer_type) {
    for (auto useGpu : {false, true}) {
      testLayerGrad(config, layer_type, 100, false, useGpu);
    }
  };

  if (layer_type == "average") {
    for (auto strategy : {"average", "sum", "squarerootn"}) {
      LOG(INFO) << " hasSubseq=" << hasSubseq << " trans_type=" << trans_type
                << " average_strategy=" << strategy;
      config.layerConfig.set_average_strategy(strategy);
      testDegradeLayerGrad(config, layer_type);
    }
  } else {
    LOG(INFO) << " hasSubseq=" << hasSubseq << " trans_type=" << trans_type;
    testDegradeLayerGrad(config, layer_type);
  }
}

TEST(Layer, MaxLayer) {
  testDegradeLayer(false, "max", "non-seq");  // seq max to non-seq
  testDegradeLayer(true, "max", "non-seq");   // hasSubseq max to non-seq
  testDegradeLayer(true, "max", "seq");       // hasSubseq max to seq
}

TEST(Layer, SequenceLastInstanceLayer) {
811 812
  testDegradeLayer(false,
                   "seqlastins",
Z
zhangjinchao01 已提交
813
                   "non-seq");  // seq seqlastins to non-seq
814 815
  testDegradeLayer(true,
                   "seqlastins",
Z
zhangjinchao01 已提交
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
                   "non-seq");  // hasSubseq seqlastins to non-seq
  testDegradeLayer(true, "seqlastins", "seq");  // hasSubseq seqlastins to seq
}

TEST(Layer, AverageLayer) {
  testDegradeLayer(false, "average", "non-seq");  // seq average to non-seq
  testDegradeLayer(true, "average", "non-seq");  // hasSubseq average to non-seq
  testDegradeLayer(true, "average", "seq");      // hasSubseq average to seq
}

TEST(Layer, SequenceConcatLayer) {
  TestConfig config;
  config.layerConfig.set_type("seqconcat");
  config.layerConfig.set_size(10);
  config.biasSize = 0;

  config.inputDefs.push_back({INPUT_SEQUENCE_DATA, "layer_0", 10, 0});
  config.layerConfig.add_inputs();
  config.inputDefs.push_back({INPUT_SEQUENCE_DATA, "layer_1", 10, 0});
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "seqconcat", 100, false, useGpu);
  }
}

TEST(Layer, SequenceReshapeLayer) {
  TestConfig config;
  config.layerConfig.set_type("seqreshape");
  config.layerConfig.set_size(10);

  config.inputDefs.push_back({INPUT_SEQUENCE_DATA, "layer_0", 100, 0});
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "seqreshape", 100, false, useGpu);
  }
}

TEST(Layer, ConvShiftLayer) {
  TestConfig config;
  config.layerConfig.set_type("conv_shift");
  config.layerConfig.set_size(10);

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 10, 0});
  config.inputDefs.push_back({INPUT_DATA, "layer_1", 3, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  // Not support GPU now
  testLayerGrad(config, "conv_shift", 100, false, false);
}

TEST(Layer, PowerLayer) {
  TestConfig config;
  config.layerConfig.set_type("power");
  config.layerConfig.set_size(10);

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 1, 0});
  config.inputDefs.push_back({INPUT_DATA, "layer_1", 10, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "power", 100, false, useGpu);
  }
}

TEST(Layer, ConvexCombinationLayer) {
  TestConfig config;
  config.layerConfig.set_type("convex_comb");
  config.layerConfig.set_size(20);
  config.biasSize = 0;

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 5, 0});
  config.inputDefs.push_back({INPUT_DATA, "layer_1", 100, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "convex_comb", 100, false, useGpu);
  }
}

TEST(Layer, InterpolationLayer) {
  TestConfig config;
  config.layerConfig.set_type("interpolation");
  config.layerConfig.set_size(10);
  config.biasSize = 0;

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 1, 0});
  config.inputDefs.push_back({INPUT_DATA, "layer_1", 10, 0});
  config.inputDefs.push_back({INPUT_DATA, "layer_2", 10, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "interpolation", 100, false, useGpu);
  }
}

TEST(Layer, OuterProdLayer) {
  TestConfig config;
  config.layerConfig.set_type("out_prod");
  config.layerConfig.set_size(100);

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 10, 0});
  config.layerConfig.add_inputs();
  config.inputDefs.push_back({INPUT_DATA, "layer_1", 10, 0});
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "out_prod", 100, false, useGpu);
  }
}

TEST(Layer, SlopeInterceptLayer) {
  TestConfig config;
  config.layerConfig.set_type("slope_intercept");
  config.layerConfig.set_size(10);
  config.layerConfig.set_slope(1.0);
  config.layerConfig.set_intercept(0.1);

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 10, 0});
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "slope_intercept", 100, false, useGpu);
  }
}

TEST(Layer, ScalingLayer) {
  TestConfig config;
  config.layerConfig.set_type("scaling");
  config.layerConfig.set_size(10);
  config.biasSize = 0;

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 1, 0});
  config.layerConfig.add_inputs();
  config.inputDefs.push_back({INPUT_DATA, "layer_1", 10, 0});
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "scaling", 100, false, useGpu);
  }
}

void testNormLayer(const string& normType, bool trans, bool useGpu) {
  TestConfig config;
  config.layerConfig.set_type("norm");
  config.layerConfig.set_active_type("relu");

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 3136, 0});
  LayerInputConfig* input = config.layerConfig.add_inputs();
  NormConfig* norm = input->mutable_norm_conf();
  norm->set_norm_type(normType);
  norm->set_channels(16);
  norm->set_size(5);
  norm->set_scale(0.001);
  norm->set_pow(0.75);
  norm->set_blocked(0);
  norm->set_img_size(14);
  norm->set_output_x(norm->img_size());
  if (norm->norm_type() == "cmrnorm" ||
      norm->norm_type() == "cmrnorm-projection") {
    norm->set_scale(norm->scale() / norm->size());
  } else {
    norm->set_scale(norm->scale() / (norm->size() * norm->size()));
  }

  config.layerConfig.set_size(norm->output_x() * norm->output_x() *
                              norm->channels());
  config.biasSize = 0;

  testLayerGrad(config, "norm", 100, trans, useGpu);
}

#ifndef PADDLE_ONLY_CPU
TEST(Layer, NormLayer) {
  testNormLayer("cmrnorm-projection", /* trans= */ false, /* useGpu= */ true);
}
#endif

1000 1001
void setPoolConfig(TestConfig* config,
                   PoolConfig* pool,
Z
zhangjinchao01 已提交
1002 1003 1004 1005 1006
                   const string& poolType) {
  (*config).biasSize = 0;
  (*config).layerConfig.set_type("pool");
  (*config).layerConfig.set_num_filters(16);

1007 1008 1009
  int kw = 3, kh = 3;
  int pw = 0, ph = 0;
  int sw = 2, sh = 2;
Z
zhangjinchao01 已提交
1010 1011
  pool->set_pool_type(poolType);
  pool->set_channels(16);
1012 1013 1014 1015 1016 1017 1018 1019
  pool->set_size_x(kw);
  pool->set_size_y(kh);
  pool->set_start(0);
  pool->set_padding(pw);
  pool->set_padding_y(ph);
  pool->set_stride(sw);
  pool->set_stride_y(sh);

1020 1021
  int ow = outputSize(pool->img_size(), kw, pw, sw, /* caffeMode */ false);
  int oh = outputSize(pool->img_size_y(), kh, ph, sh, /* caffeMode */ false);
1022 1023
  pool->set_output_x(ow);
  pool->set_output_y(oh);
Z
zhangjinchao01 已提交
1024 1025 1026 1027 1028 1029 1030 1031 1032
}

void testPoolLayer(const string& poolType, bool trans, bool useGpu) {
  TestConfig config;
  config.inputDefs.push_back({INPUT_DATA, "layer_0", 3136, 0});
  LayerInputConfig* input = config.layerConfig.add_inputs();
  PoolConfig* pool = input->mutable_pool_conf();

  pool->set_img_size(14);
1033 1034 1035
  pool->set_img_size_y(14);
  setPoolConfig(&config, pool, poolType);
  config.layerConfig.set_size(pool->output_x() * pool->output_y() *
Z
zhangjinchao01 已提交
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
                              pool->channels());

  testLayerGrad(config, "pool", 100, trans, useGpu);
}

#ifndef PADDLE_ONLY_CPU
void testPoolLayer2(const string& poolType, bool trans, bool useGpu) {
  TestConfig config;
  config.inputDefs.push_back({INPUT_DATA, "layer_0", 3200, 0});
  LayerInputConfig* input = config.layerConfig.add_inputs();
  PoolConfig* pool = input->mutable_pool_conf();

  pool->set_size_y(4);
  pool->set_stride_y(3);
  pool->set_img_size(10);
  pool->set_img_size_y(20);
1052
  setPoolConfig(&config, pool, poolType);
Z
zhangjinchao01 已提交
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
  pool->set_output_y((pool->img_size_y() - pool->start() - pool->size_y()) /
                         ((float)pool->stride_y()) +
                     1.5);
  config.layerConfig.set_size(pool->output_x() * pool->output_y() *
                              pool->channels());

  testLayerGrad(config, "pool", 100, trans, useGpu);
}
#endif

TEST(Layer, PoolLayer) {
  testPoolLayer("avg-projection", /* trans= */ false, /* useGpu= */ false);
  testPoolLayer("max-projection", /* trans= */ false, /* useGpu= */ false);

#ifndef PADDLE_ONLY_CPU
  testPoolLayer("avg-projection", /* trans= */ false, /* useGpu= */ true);
  testPoolLayer("max-projection", /* trans= */ false, /* useGpu= */ true);
  testPoolLayer("cudnn-max-pool", /* trans= */ false, /* useGpu= */ true);
  testPoolLayer("cudnn-avg-pool", /* trans= */ false, /* useGpu= */ true);
  testPoolLayer2("cudnn-max-pool", /* trans= */ false, /* useGpu= */ true);
  testPoolLayer2("cudnn-avg-pool", /* trans= */ false, /* useGpu= */ true);
#endif
}

1077 1078 1079
void testSppLayer(const string& poolType,
                  const int pyramidHeight,
                  bool trans,
Q
qijun 已提交
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
                  bool useGpu) {
  TestConfig config;
  config.layerConfig.set_type("spp");
  config.inputDefs.push_back({INPUT_DATA, "layer_0", 3200, 0});
  LayerInputConfig* input = config.layerConfig.add_inputs();
  SppConfig* sppConfig = input->mutable_spp_conf();
  sppConfig->set_pool_type(poolType);
  sppConfig->set_pyramid_height(pyramidHeight);
  sppConfig->set_channels(16);
  sppConfig->set_img_size(10);
  sppConfig->set_img_size_y(20);
Q
qijun 已提交
1091 1092
  int outputSize = (std::pow(4, sppConfig->pyramid_height()) - 1) / (4 - 1);
  config.layerConfig.set_size(outputSize * sppConfig->channels());
Q
qijun 已提交
1093 1094 1095 1096 1097
  testLayerGrad(config, "spp", 100, trans, useGpu);
}

TEST(Layer, SpatialPyramidPoolLayer) {
  for (auto useGpu : {false, true}) {
1098 1099 1100 1101
    for (auto pyramidHeight : {1, 2, 3}) {
      testSppLayer("avg-projection", pyramidHeight, false, useGpu);
      testSppLayer("max-projection", pyramidHeight, false, useGpu);
    }
Q
qijun 已提交
1102 1103 1104
  }
}

Z
zhangjinchao01 已提交
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
TEST(Layer, rankCostLayer) {
  TestConfig config;
  config.layerConfig.set_type("rank-cost");
  config.biasSize = 0;

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 1, 0});
  config.inputDefs.push_back({INPUT_DATA, "layer_1", 1, 0});
  config.inputDefs.push_back({INPUT_DATA_TARGET, "layer_2", 1, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "rank-cost", 100, false, useGpu);
  }
}

X
xuwei06 已提交
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
TEST(Layer, sumCostLayer) {
  TestConfig config;
  config.layerConfig.set_type("sum_cost");
  config.biasSize = 0;

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 1, 0});
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "sum_cost", 100, false, useGpu);
  }
}

Z
zhangjinchao01 已提交
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
TEST(Layer, weightedRankCostLayer) {
  TestConfig config;
  config.layerConfig.set_type("rank-cost");
  config.biasSize = 0;

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 1, 0});
  config.inputDefs.push_back({INPUT_DATA, "layer_1", 1, 0});
  config.inputDefs.push_back({INPUT_DATA_TARGET, "layer_2", 1, 0});
  config.inputDefs.push_back({INPUT_DATA_TARGET, "layer_3", 1, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "weighted-rank-cost", 100, false, useGpu);
  }
}

TEST(Layer, TensorLayer) {
  TestConfig config;
  config.layerConfig.set_type("tensor");
  config.layerConfig.set_size(10);
  config.layerConfig.set_active_type("sigmoid");
  config.biasSize = config.layerConfig.size();

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 5, 250});
  config.inputDefs.push_back({INPUT_DATA, "layer_1", 5, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "tensor", 100, false, useGpu);
  }
}

TEST(Layer, RecurrentLayer) {
  TestConfig config;
  config.layerConfig.set_type("recurrent");
  config.layerConfig.set_size(4);
  config.layerConfig.set_active_type("tanh");
  config.biasSize = 4;

  config.inputDefs.push_back(
      {INPUT_SEQUENCE_DATA, "layer_0", /* dim= */ 4, /* paraSize= */ 16});
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    for (auto reversed : {false, true}) {
      config.layerConfig.set_reversed(reversed);
      config.testState = !reversed;
      testLayerGrad(config, "recurrent", 50, /* trans= */ false, useGpu);
    }
  }
}

TEST(Layer, LstmLayer) {
  TestConfig config;
  config.layerConfig.set_type("lstmemory");
  config.layerConfig.set_size(4);
1195
  config.layerConfig.set_active_type("tanh");
Z
zhangjinchao01 已提交
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
  config.layerConfig.set_active_state_type("sigmoid");
  config.layerConfig.set_active_gate_type("sigmoid");
  config.biasSize = 28;

  config.inputDefs.push_back(
      {INPUT_SEQUENCE_DATA, "layer_0", /* dim= */ 16, /* paraSize= */ 64});
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    for (auto reversed : {false, true}) {
      config.layerConfig.set_reversed(reversed);
      config.testState = !reversed;
      testLayerGrad(config, "lstmemory", 100, /* trans= */ false, useGpu);
    }
  }
  for (auto useGpu : {true}) {
    config.testBatchState = true;
    config.layerConfig.set_reversed(false);
    testLayerGrad(config, "lstmemory", 10, /* trans= */ false, useGpu);
  }
}

TEST(Layer, MDLstmLayer) {
  TestConfig config;
  config.layerConfig.set_type("mdlstmemory");
  config.layerConfig.set_size(4);
  config.layerConfig.set_active_type("sigmoid");
  config.layerConfig.set_active_state_type("sigmoid");
  config.layerConfig.set_active_gate_type("sigmoid");
  config.biasSize = 4 * 9;

  config.inputDefs.push_back(
      {INPUT_SEQUENCE_MDIM_DATA, "layer_0", 4 * 5, 4 * 4 * 5});
  config.layerConfig.add_inputs();
  config.layerConfig.add_directions(true);
  config.layerConfig.add_directions(true);

  for (auto useGpu : {false, true}) {
    for (int i = 0; i < 2; i++) {
      for (int j = 0; j < 2; j++) {
        config.layerConfig.set_directions(0, bool(i));
        config.layerConfig.set_directions(1, bool(j));
        testLayerGrad(config, "mdlstmemory", 100, false, useGpu);
      }
    }
  }
}

TEST(Layer, ParameterReluLayer) {
  auto testParameterReluLayer = [&](size_t inputSize, size_t channels) {
    TestConfig config;
    config.layerConfig.set_type("prelu");
    config.inputDefs.push_back({INPUT_DATA, "layer_0", inputSize, channels});
    config.layerConfig.add_inputs();
    config.layerConfig.set_size(inputSize);
    config.layerConfig.set_partial_sum(inputSize /
                                       channels);  // size of feature map
    for (auto useGpu : {false, true}) {
      testLayerGrad(config, "prelu", 100, false, useGpu);
    }
  };

  testParameterReluLayer(192, 1);
  testParameterReluLayer(192, 3);
  testParameterReluLayer(192, 192);
}

TEST(Layer, ResizeLayer) {
  TestConfig config;
  config.biasSize = 0;
  config.layerConfig.set_type("resize");
  config.layerConfig.set_size(64);

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 16, 0});
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "resize", 100, false, useGpu);
  }
}

TEST(Layer, NCELayer) {
  TestConfig config;
  size_t numClasses = 4;
  config.layerConfig.set_type("nce");
  config.layerConfig.set_size(1);
  config.layerConfig.set_active_type("sigmoid");
  config.layerConfig.set_num_classes(numClasses);
  config.biasSize = numClasses;

  config.inputDefs.push_back(
      {INPUT_DATA, "layer_0", /* dim= */ 16, /* paraSize= */ 16 * numClasses});
  config.inputDefs.push_back(
      {INPUT_LABEL, "label", /* dim= */ numClasses, /* paraSize= */ 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  for (auto withWeight : {false, true}) {
    if (withWeight) {
      config.inputDefs.push_back(
          {INPUT_DATA_TARGET, "weight", /* dim= */ 1, /* paraSize= */ 0});
      config.layerConfig.add_inputs();
    }

    for (auto isIdLabel : {false, true}) {
      config.inputDefs[1] = {
1302 1303
          isIdLabel ? INPUT_LABEL : INPUT_SPARSE_NON_VALUE_DATA,
          "label",
Z
zhangjinchao01 已提交
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
          /* dim= */ numClasses,
          /* paraSize= */ 0};

      for (auto withDist : {false, true}) {
        config.layerConfig.clear_neg_sampling_dist();
        if (withDist) {
          double sum = 0;
          for (size_t i = 0; i < numClasses; ++i) {
            real p = rand();  // NOLINT use rand_r
            config.layerConfig.add_neg_sampling_dist(p);
            sum += p;
          }
          for (size_t i = 0; i < numClasses; ++i) {
            real p = config.layerConfig.neg_sampling_dist(i) / sum;
            config.layerConfig.set_neg_sampling_dist(i, p);
          }
        }
        LOG(INFO) << "NCELayer "
                  << " isIdLabel=" << isIdLabel << " withWeight=" << withWeight
                  << " withDist=" << withDist;
        // Not support GPU now
1325 1326 1327 1328
        testLayerGrad(config,
                      "nce",
                      100,
                      /* trans= */ false,
Z
zhangjinchao01 已提交
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
                      /* useGpu */ false);
      }
    }
  }
}

TEST(Layer, GatedRecurrentLayer) {
  TestConfig config;
  config.layerConfig.set_type("gated_recurrent");
  config.layerConfig.set_size(4);
  config.layerConfig.set_active_type("sigmoid");
  config.layerConfig.set_active_gate_type("sigmoid");
  config.biasSize = 12;

  config.inputDefs.push_back(
      {INPUT_SEQUENCE_DATA, "layer_0", /* dim= */ 12, /* paraSize= */ 48});
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    for (auto reversed : {false, true}) {
      config.layerConfig.set_reversed(reversed);
      config.testState = !reversed;
      testLayerGrad(config, "gated_recurrent", 100, /* trans= */ false, useGpu);
    }
  }
}

TEST(Layer, GruStepLayer) {
  TestConfig config;
  config.layerConfig.set_type("gru_step");
  config.layerConfig.set_size(4);
  config.layerConfig.set_active_type("sigmoid");
  config.layerConfig.set_active_gate_type("sigmoid");
  config.biasSize = 12;

  config.inputDefs.push_back(
      {INPUT_DATA, "layer_0", /* dim= */ 12, /* paraSize= */ 48});
  config.inputDefs.push_back(
      {INPUT_DATA, "layer_1", /* dim= */ 4, /* paraSize= */ 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "gruStep", 100, /* trans= */ false, useGpu);
  }
}

TEST(Layer, LstmStepLayer) {
  TestConfig config;
  config.layerConfig.set_type("lstm_step");
  config.layerConfig.set_size(4);
  config.layerConfig.set_active_type("sigmoid");
  config.layerConfig.set_active_state_type("sigmoid");
  config.layerConfig.set_active_gate_type("sigmoid");
  config.biasSize = 12;
  config.testAccumulate = false;

  config.inputDefs.push_back(
      {INPUT_DATA, "layer_0", /* dim= */ 16, /* paraSize= */ 0});
  config.inputDefs.push_back(
      {INPUT_DATA, "layer_1", /* dim= */ 4, /* paraSize= */ 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "lstmStep", 100, /* trans= */ false, useGpu);
  }
}

void testBatchNormLayer(const string& type, bool trans, bool useGpu) {
  TestConfig config;
  const int CHANNELS = 10;
  const int IMG_SIZE = 16;
  config.layerConfig.set_type(type);
  config.layerConfig.set_size(CHANNELS * IMG_SIZE * IMG_SIZE);
  config.layerConfig.set_active_type("sigmoid");
  config.biasSize = CHANNELS;
1406 1407
  config.inputDefs.push_back({INPUT_DATA,
                              "layer_0",
Z
zhangjinchao01 已提交
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
                              /* dim= */ IMG_SIZE * IMG_SIZE * CHANNELS,
                              /* paraSize= */ CHANNELS});

  config.inputDefs.push_back({INPUT_DATA, "layer_1_running_mean", 1, CHANNELS});
  config.inputDefs.back().isStatic = true;
  config.inputDefs.push_back({INPUT_DATA, "layer_2_running_var", 1, CHANNELS});
  config.inputDefs.back().isStatic = true;

  LayerInputConfig* input = config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  ImageConfig* img_conf = input->mutable_image_conf();
  img_conf->set_channels(CHANNELS);
  img_conf->set_img_size(IMG_SIZE);

1424 1425 1426 1427 1428
  testLayerGrad(config,
                "batch_norm",
                64,
                /* trans= */ trans,
                useGpu,
Z
zhangjinchao01 已提交
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
                /* useWeight */ true);
}

TEST(Layer, BatchNormalizationLayer) {
  testBatchNormLayer("batch_norm", false, false);
#ifndef PADDLE_ONLY_CPU
  testBatchNormLayer("batch_norm", false, true);
  if (hl_get_cudnn_lib_version() >= int(4000)) {
    testBatchNormLayer("cudnn_batch_norm", false, true);
  }
#endif
}

TEST(Operator, conv) {
  TestConfig config;
  const int NUM_FILTERS = 16;
  const int FILTER_SIZE = 2;
  const int FILTER_SIZE_Y = 3;
  const int CHANNELS = 3;
  const int IMAGE_SIZE = 16;
  OperatorConfig& operatorConf = *config.layerConfig.add_operator_confs();
  operatorConf.set_type("conv");
  ConvConfig* conv = operatorConf.mutable_conv_conf();
  operatorConf.set_num_filters(NUM_FILTERS);
  conv->set_filter_size(FILTER_SIZE);
  conv->set_filter_size_y(FILTER_SIZE_Y);
  conv->set_channels(CHANNELS);
  conv->set_padding(0);
  conv->set_padding_y(1);
  conv->set_stride(2);
  conv->set_stride_y(2);
  conv->set_groups(1);
  conv->set_filter_channels(conv->channels() / conv->groups());
  conv->set_img_size(IMAGE_SIZE);
1463 1464 1465 1466 1467
  int output_x = outputSize(conv->img_size(),
                            conv->filter_size(),
                            conv->padding(),
                            conv->stride(),
                            /* caffeMode */ true);
1468 1469
  conv->set_output_x(output_x);
  config.layerConfig.set_size(output_x * output_x *
Z
zhangjinchao01 已提交
1470 1471 1472 1473 1474 1475 1476
                              config.layerConfig.num_filters());
  config.layerConfig.set_size(conv->output_x() * conv->output_x() *
                              NUM_FILTERS);

  config.inputDefs.push_back(
      {INPUT_DATA, "layer_0", IMAGE_SIZE * IMAGE_SIZE * CHANNELS, 0});
  config.inputDefs.push_back(
1477 1478 1479 1480
      {INPUT_DATA,
       "layer_1",
       FILTER_SIZE * FILTER_SIZE_Y * CHANNELS * NUM_FILTERS,
       0});
Z
zhangjinchao01 已提交
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  testOperatorGrad(config, operatorConf, 100, /*useGpu*/ true, false);
}

TEST(Layer, FeatureMapExpandLayer) {
  TestConfig config;
  config.layerConfig.set_type("featmap_expand");
  const int CHANNELS = 10;
  const int INPUT_SIZE = 100;
  config.layerConfig.set_size(INPUT_SIZE * CHANNELS);
  config.layerConfig.set_num_filters(CHANNELS);
1494 1495 1496 1497
  config.inputDefs.push_back({INPUT_SEQUENCE_DATA,
                              "layer_0",
                              /* dim= */ INPUT_SIZE,
                              /* paraSize= */ 0});
Z
zhangjinchao01 已提交
1498 1499
  config.layerConfig.add_inputs();
  for (auto useGpu : {false, true}) {
1500 1501 1502 1503 1504
    testLayerGrad(config,
                  "featmap_expand",
                  /*batch_size*/ 100,
                  /* trans= */ false,
                  useGpu,
Z
zhangjinchao01 已提交
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
                  /* useWeight */ true);
  }
}

TEST(Layer, MultiplexLayer) {
  TestConfig config;
  const int LAYER_SIZE = 100;
  config.layerConfig.set_type("multiplex");
  config.layerConfig.set_size(LAYER_SIZE);

  config.inputDefs.push_back({INPUT_LABEL, "layer_0", 2, 0});
  config.inputDefs.push_back(
      {INPUT_DATA, "layer_1", /* dim= */ LAYER_SIZE, /* paraSize= */ 0});
  config.inputDefs.push_back(
      {INPUT_DATA, "layer_2", /* dim= */ LAYER_SIZE, /* paraSize= */ 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "multiplex", 512, /* trans= */ false, useGpu);
  }
}

int main(int argc, char** argv) {
  testing::InitGoogleTest(&argc, argv);
  initMain(argc, argv);
  FLAGS_thread_local_rand_use_global_seed = true;
  srand(1);
  return RUN_ALL_TESTS();
}