softmax_with_cross_entropy_op.h 4.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
caoying03 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
caoying03 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
caoying03 已提交
8

C
caoying03 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
caoying03 已提交
14 15

#pragma once
Y
Yi Wang 已提交
16 17 18 19
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/cross_entropy.h"
#include "paddle/fluid/operators/math/softmax.h"
C
caoying03 已提交
20 21 22 23 24 25 26 27 28

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

29
template <typename T>
Y
Yu Yang 已提交
30
class SoftmaxWithCrossEntropyKernel : public framework::OpKernel<T> {
C
caoying03 已提交
31
 public:
C
caoying03 已提交
32
  void Compute(const framework::ExecutionContext& context) const override {
C
caoying03 已提交
33
    PADDLE_ENFORCE(platform::is_cpu_place(context.GetPlace()),
34
                   "This kernel only runs on CPU.");
C
caoying03 已提交
35
    const Tensor* logits = context.Input<Tensor>("Logits");
36
    const Tensor* labels = context.Input<Tensor>("Label");
C
caoying03 已提交
37
    Tensor* softmax = context.Output<Tensor>("Softmax");
38
    Tensor* loss = context.Output<Tensor>("Loss");
C
caoying03 已提交
39

40 41
    softmax->mutable_data<T>(context.GetPlace());
    loss->mutable_data<T>(context.GetPlace());
C
caoying03 已提交
42

43 44 45 46 47 48 49 50
    // reshape to 2D tensor
    int rank = logits->dims().size();
    Tensor logits_2d = framework::ReshapeToMatrix(*logits, rank - 1);
    Tensor labels_2d = framework::ReshapeToMatrix(*labels, rank - 1);
    Tensor loss_2d = framework::ReshapeToMatrix(*loss, rank - 1);
    Tensor softmax_2d = framework::ReshapeToMatrix(*softmax, rank - 1);

    int axis_dim = logits->dims()[rank - 1];
D
dengkaipeng 已提交
51

Q
QI JUN 已提交
52 53
    auto& dev_ctx =
        context.template device_context<platform::CPUDeviceContext>();
54
    math::SoftmaxFunctor<platform::CPUDeviceContext, T, false>()(
55
        dev_ctx, axis_dim, &logits_2d, &softmax_2d);
Q
QI JUN 已提交
56
    math::CrossEntropyFunctor<platform::CPUDeviceContext, T>()(
57 58
        dev_ctx, &loss_2d, &softmax_2d, &labels_2d,
        context.Attr<bool>("soft_label"), context.Attr<int>("ignore_index"));
C
caoying03 已提交
59
  }
C
caoying03 已提交
60 61
};

62
template <typename T>
Y
Yu Yang 已提交
63
class SoftmaxWithCrossEntropyGradKernel : public framework::OpKernel<T> {
C
caoying03 已提交
64
 public:
65
  void Compute(const framework::ExecutionContext& context) const override {
66 67 68
    const Tensor* out_grad =
        context.Input<Tensor>(framework::GradVarName("Loss"));
    const Tensor* labels = context.Input<Tensor>("Label");
69 70
    Tensor* logit_grad =
        context.Output<Tensor>(framework::GradVarName("Logits"));
Z
Zeng Jinle 已提交
71 72 73 74 75 76

    const Tensor* softmax = context.Input<Tensor>("Softmax");
    if (logit_grad != softmax) {
      framework::TensorCopy(*softmax, context.GetPlace(),
                            context.device_context(), logit_grad);
    }
77

78 79 80 81 82 83 84 85
    int rank = logit_grad->dims().size();
    const int class_num = logit_grad->dims()[rank - 1];
    // reshape to 2d
    Tensor logit_grad_2d = framework::ReshapeToMatrix(*logit_grad, rank - 1);
    Tensor out_grad_2d = framework::ReshapeToMatrix(*out_grad, rank - 1);

    auto out_grad_mat = EigenMatrix<T>::From(out_grad_2d);
    auto logit_grad_mat = EigenMatrix<T>::From(logit_grad_2d);
Q
QI JUN 已提交
86 87
    auto& place = *context.template device_context<platform::CPUDeviceContext>()
                       .eigen_device();
88
    if (context.Attr<bool>("soft_label")) {
89 90
      Tensor labels_2d = framework::ReshapeToMatrix(*labels, rank - 1);
      auto lbl_mat = EigenMatrix<T>::From(labels_2d);
Q
QI JUN 已提交
91
      logit_grad_mat.device(place) =
C
caoying03 已提交
92 93
          out_grad_mat.broadcast(Eigen::DSizes<int, 2>(1, class_num)) *
          (logit_grad_mat - lbl_mat);
94
    } else {
Q
QI JUN 已提交
95
      logit_grad_mat.device(place) =
C
caoying03 已提交
96 97 98
          logit_grad_mat *
          out_grad_mat.broadcast(Eigen::DSizes<int, 2>(1, class_num));

99 100
      const int batch_size = logit_grad_2d.dims()[0];

C
caoying03 已提交
101
      const int64_t* label_data = labels->data<int64_t>();
102
      T* logit_grad_data = logit_grad->data<T>();
C
caoying03 已提交
103
      const T* out_grad_data = out_grad->data<T>();
104
      for (int i = 0; i < batch_size; ++i) {
C
caoying03 已提交
105
        logit_grad_data[i * class_num + label_data[i]] -= out_grad_data[i];
106
      }
107 108
    }
  }
C
caoying03 已提交
109 110 111 112
};

}  // namespace operators
}  // namespace paddle