quant_nn.py 21.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.fluid.dygraph import layers
from paddle.fluid import core
from paddle.fluid import dygraph_utils
from paddle.fluid import unique_name
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.framework import _varbase_creator
from paddle.fluid.framework import in_dygraph_mode
from paddle.fluid.initializer import Constant
from paddle.fluid.data_feeder import check_variable_and_dtype

__all__ = [
    'FakeQuantMovingAverage', 'FakeQuantAbsMax', 'QuantizedConv2D',
27 28
    'QuantizedLinear', 'FakeChannelWiseQuantDequantAbsMax',
    'MovingAverageAbsMaxScale'
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
]


class FakeQuantMovingAverage(layers.Layer):
    """
    FakeQuantMovingAverage layer does the moving_average_abs_max quant and then dequant.
    Its computational formula is described as below:

    :math:`scale = (moving\_rate*accum+max(abs(x)))/(moving\_rate*state+1)`
    :math:`range = 2^{bit\_length - 1} - 1`
    :math:`Out = round(X / scale * range) * scale / range`
    """

    def __init__(self,
                 name=None,
                 moving_rate=0.9,
                 quant_bits=8,
                 dtype='float32'):
        super(FakeQuantMovingAverage, self).__init__()
        self._moving_rate = moving_rate
        self._quant_bits = quant_bits

        scale_prefix = "{}.scale".format(
            name) if name else 'quant_dequant.scale'
        scale_attr = ParamAttr(
            name=unique_name.generate(scale_prefix),
            initializer=Constant(0.001),
            trainable=False)
        self._scale = self.create_parameter(
            shape=[1], attr=scale_attr, dtype=dtype)
        self._scale.stop_gradient = True

        state_prefix = "{}.state".format(
            name) if name else 'quant_dequant.state'
        state_attr = ParamAttr(
            name=unique_name.generate(state_prefix),
            initializer=Constant(1),
            trainable=False)
        self._state = self.create_parameter(
            shape=[1], attr=state_attr, dtype=dtype)
        self._state.stop_gradient = True

        accum_prefix = "{}.accum".format(
            name) if name else 'quant_dequant.accum'
        accum_attr = ParamAttr(
            name=unique_name.generate(accum_prefix),
            initializer=Constant(1),
            trainable=False)
        self._accum = self.create_parameter(
            shape=[1], attr=accum_attr, dtype=dtype)
        self._accum.stop_gradient = True

    def forward(self, input):
        if in_dygraph_mode():
            attrs = ('moving_rate', self._moving_rate, 'bit_length',
                     self._quant_bits, 'is_test', not self.training)
            quant_out = _varbase_creator(
                type=input.type,
                name="{}.quantized.dequantized".format(input.name),
                shape=input.shape,
                dtype=input.dtype,
                persistable=False)
            state = self._state if self.training else None
            accum = self._accum if self.training else None

            out, _, _, _ = core.ops.fake_quantize_dequantize_moving_average_abs_max(
                input, self._scale, accum, state, quant_out, self._scale, state,
                accum, *attrs)
            return out

        check_variable_and_dtype(input, 'input', ['float32'],
                                 "FakeQuantMovingAverage")
        attrs = {
            'moving_rate': self._moving_rate,
            'bit_length': self._quant_bits,
            'is_test': not self.training
        }
        inputs = {"X": [input], "InScale": [self._scale]}
        quant_out = self._helper.create_variable(
            name="{}.quantized.dequantized".format(input.name),
            dtype=input.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=False)
        outputs = {"Out": [quant_out], "OutScale": [self._scale]}

        if self.training:
            inputs['InState'] = [self._state]
            inputs['InAccum'] = [self._accum]
            outputs['OutState'] = [self._state]
            outputs['OutAccum'] = [self._accum]

        self._helper.append_op(
            type="fake_quantize_dequantize_moving_average_abs_max",
            inputs=inputs,
            outputs=outputs,
            attrs=attrs)

        return quant_out


class FakeQuantAbsMax(layers.Layer):
    """
    FakeQuantAbsMax layer does the abs_max quant and then dequant.
    Its computational formula is described as below:

    :math:`scale = max(abs(X))`
    :math:`range = 2^{bit\_length - 1} - 1`
    :math:`Out = round(X / scale * range) * scale / range`
    """

    def __init__(self,
                 name=None,
                 quant_bits=8,
                 dtype='float32',
                 quant_on_weight=False):
        super(FakeQuantAbsMax, self).__init__()
        self._quant_bits = quant_bits
        self._dtype = dtype
        self._name = name
        scale_prefix = "{}.scale".format(
            name) if name else 'quant_dequant.scale'
        self._scale_name = unique_name.generate(scale_prefix)
        if quant_on_weight:
            scale_attr = ParamAttr(
                name=self._scale_name,
                initializer=Constant(0.0),
                trainable=False)
            self._scale = self.create_parameter(
                shape=[1], attr=scale_attr, dtype=self._dtype)
            self._scale.stop_gradient = True
        else:
            self._scale = None

    def forward(self, input):
        if in_dygraph_mode():
            attrs = ('bit_length', self._quant_bits)
            quant_out = _varbase_creator(
                type=input.type,
                name="{}.quantized.dequantized".format(input.name),
                shape=input.shape,
                dtype=input.dtype,
                persistable=False)
            out_scale = self._scale
            if not out_scale:
                out_scale = _varbase_creator(
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    name=self._scale_name,
                    shape=[1],
                    dtype=self._dtype,
                    persistable=False)
                out_scale.stop_gradient = True
            out, _, = core.ops.fake_quantize_dequantize_abs_max(
                input, quant_out, out_scale, *attrs)
            return out

        check_variable_and_dtype(input, 'input', ['float32'], "FakeQuantAbsMax")
        attrs = {'bit_length': self._quant_bits}
        inputs = {"X": [input]}
        quant_out = self._helper.create_variable(
            name="{}.quantized.dequantized".format(input.name),
            dtype=input.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=False)
        out_scale = self._scale
        if not out_scale:
            out_scale = self._helper.create_variable(
                name=self._scale_name,
                dtype=self._dtype,
                type=core.VarDesc.VarType.LOD_TENSOR,
                persistable=False,
                stop_gradient=True)
        outputs = {"Out": [quant_out], "OutScale": [out_scale]}

        self._helper.append_op(
            type="fake_quantize_dequantize_abs_max",
            inputs=inputs,
            outputs=outputs,
            attrs=attrs)

        return quant_out


H
huangxu96 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
class FakeChannelWiseQuantDequantAbsMax(layers.Layer):
    def __init__(self,
                 name=None,
                 channel_num=None,
                 quant_bits=8,
                 quant_axis=0,
                 dtype='float32',
                 quant_on_weight=False):
        assert quant_on_weight == True, "Channel_wise only can be used on weight quantization."
        super(FakeChannelWiseQuantDequantAbsMax, self).__init__()
        self._quant_bits = quant_bits
        self._quant_axis = quant_axis
        self._dtype = dtype
        self._name = name
        self._channel_num = channel_num
        scale_prefix = "{}.scale".format(
            name) if name else 'quant_dequant.scale'
        self._scale_name = unique_name.generate(scale_prefix)
        if quant_on_weight:
            scale_attr = ParamAttr(
                name=self._scale_name,
                initializer=Constant(0.0),
                trainable=False)
            self._scale = self.create_parameter(
                shape=[self._channel_num], attr=scale_attr, dtype=self._dtype)
            self._scale.stop_gradient = True
        else:
            self._scale = None

    def forward(self, input):
        if in_dygraph_mode():
            attrs = ('bit_length', self._quant_bits, 'quant_axis',
                     self._quant_axis)
            quant_out = _varbase_creator(
                type=input.type,
                name="{}.quantized.dequantized".format(input.name),
                shape=input.shape,
                dtype=input.dtype,
                persistable=False)

            out_scale = self._scale
            if out_scale is None:
                out_scale = _varbase_creator(
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    name=self._scale_name,
                    shape=[self._channel_num],
                    dtype=self._dtype,
                    persistable=False)
                out_scale.stop_gradient = True

            out, _, = core.ops.fake_channel_wise_quantize_dequantize_abs_max(
                input, quant_out, out_scale, *attrs)
            return out

        check_variable_and_dtype(input, 'input', ['float32'],
                                 "FakeChannelWiseQuantDequantAbsMax")
        attrs = {'bit_length': self._quant_bits, 'quant_axis': self._quant_axis}
        inputs = {"X": [input]}
        quant_out = self._helper.create_variable(
            name="{}.quantized.dequantized".format(input.name),
            dtype=input.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=False)
        out_scale = self._scale
        if not out_scale:
            out_scale = self._helper.create_variable(
                name=self._scale_name,
                dtype=self._dtype,
                type=core.VarDesc.VarType.LOD_TENSOR,
                persistable=False,
                stop_gradient=True)
        outputs = {"Out": [quant_out], "OutScale": [out_scale]}

        self._helper.append_op(
            type="fake_channel_wise_quantize_dequantize_abs_max",
            inputs=inputs,
            outputs=outputs,
            attrs=attrs)

        return quant_out


296 297 298 299 300 301 302 303 304 305 306
def _get_fake_quant_type(quant_type, **kwargs):
    call_args = {
        "name": kwargs.get("name", None),
        "quant_bits": kwargs.get("quant_bits", 8),
        "dtype": kwargs.get("dtype", "float32")
    }

    if quant_type == 'abs_max':
        call_args["quant_on_weight"] = kwargs.get("quant_on_weight", False)
    elif quant_type == 'moving_average_abs_max':
        call_args["moving_rate"] = kwargs.get("moving_rate", 0.9)
H
huangxu96 已提交
307 308 309 310 311 312 313
    elif quant_type == 'channel_wise_abs_max':
        call_args["quant_on_weight"] = kwargs.get("quant_on_weight", False)
        call_args["channel_num"] = kwargs.get("channel_num", None)
        call_args["quant_axis"] = kwargs.get("quant_axis", 0)
        assert call_args["channel_num"] is not None, (
            "You need to input channel_num"
            "when you use channel_wise_abs_max strategy.")
314
    fake_quant_map = {
315
        'abs_max': FakeQuantAbsMax,
H
huangxu96 已提交
316 317
        'moving_average_abs_max': FakeQuantMovingAverage,
        'channel_wise_abs_max': FakeChannelWiseQuantDequantAbsMax
318
    }
319 320

    return fake_quant_map[quant_type](**call_args)
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348


class QuantizedConv2D(layers.Layer):
    """
    The computational logic of QuantizedConv2D is the same with Conv2D.
    The only difference is that its inputs are all fake quantized.
    """

    def __init__(self,
                 layer,
                 weight_bits=8,
                 activation_bits=8,
                 moving_rate=0.9,
                 weight_quantize_type='abs_max',
                 activation_quantize_type='abs_max'):
        super(QuantizedConv2D, self).__init__()
        # For Conv2D
        self._groups = getattr(layer, '_groups')
        self._stride = getattr(layer, '_stride')
        self._padding = getattr(layer, '_padding')
        self._dilation = getattr(layer, '_dilation')
        self._act = getattr(layer, '_act')
        self._use_cudnn = getattr(layer, '_use_cudnn')
        self._dtype = getattr(layer, '_dtype')
        self._l_type = getattr(layer, '_l_type')
        self.weight = getattr(layer, 'weight')
        self.bias = getattr(layer, 'bias')
        # For FakeQuant
H
huangxu96 已提交
349
        self._conv2d_quant_axis = 0
350
        self._fake_quant_weight = _get_fake_quant_type(
351 352 353 354 355
            weight_quantize_type,
            name=self.weight.name,
            moving_rate=moving_rate,
            quant_bits=weight_bits,
            dtype=self._dtype,
H
huangxu96 已提交
356 357 358
            quant_on_weight=True,
            channel_num=self.weight.shape[self._conv2d_quant_axis],
            quant_axis=self._conv2d_quant_axis)
359 360
        self._fake_quant_input = _get_fake_quant_type(
            activation_quantize_type,
361 362 363
            name=layer.full_name(),
            moving_rate=moving_rate,
            quant_bits=activation_bits,
H
huangxu96 已提交
364 365
            dtype=self._dtype,
            quant_on_weight=False)
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438

    def forward(self, input):
        quant_input = self._fake_quant_input(input)
        quant_weight = self._fake_quant_weight(self.weight)

        if in_dygraph_mode() and self._l_type == 'conv2d':
            attrs = ('strides', self._stride, 'paddings', self._padding,
                     'dilations', self._dilation, 'groups', self._groups
                     if self._groups else 1, 'use_cudnn', self._use_cudnn)
            pre_bias = core.ops.conv2d(quant_input, quant_weight, *attrs)

            pre_act = dygraph_utils._append_bias_in_dygraph(pre_bias, self.bias,
                                                            1)
            return dygraph_utils._append_activation_in_dygraph(pre_act,
                                                               self._act)
        check_variable_and_dtype(quant_input, 'input',
                                 ['float16', 'float32', 'float64'],
                                 'QuantizedConv2D')
        attrs = {
            'strides': self._stride,
            'paddings': self._padding,
            'dilations': self._dilation,
            'groups': self._groups if self._groups else 1,
            'use_cudnn': self._use_cudnn,
            'use_mkldnn': False,
        }
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

        self._helper.append_op(
            type=self._l_type,
            inputs={
                'Input': quant_input,
                'Filter': quant_weight,
            },
            outputs={"Output": pre_bias},
            attrs=attrs)

        if self.bias is not None:
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
                        'Y': [self.bias]},
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        return self._helper.append_activation(pre_act, act=self._act)


class QuantizedLinear(layers.Layer):
    """
    The computational logic of QuantizedLinear is the same with Linear.
    The only difference is that its inputs are all fake quantized.
    """

    def __init__(self,
                 layer,
                 weight_bits=8,
                 activation_bits=8,
                 moving_rate=0.9,
                 weight_quantize_type='abs_max',
                 activation_quantize_type='abs_max'):
        super(QuantizedLinear, self).__init__()
        # For Linear
        self._act = getattr(layer, '_act')
        self._dtype = getattr(layer, '_dtype')
        self.weight = getattr(layer, 'weight')
        self.bias = getattr(layer, 'bias')
        # For FakeQuant
H
huangxu96 已提交
439
        self._linear_quant_axis = 1
440
        self._fake_quant_weight = _get_fake_quant_type(
441 442 443 444 445
            weight_quantize_type,
            name=self.weight.name,
            moving_rate=moving_rate,
            quant_bits=weight_bits,
            dtype=self._dtype,
H
huangxu96 已提交
446 447 448
            quant_on_weight=True,
            channel_num=self.weight.shape[self._linear_quant_axis],
            quant_axis=self._linear_quant_axis)
449 450
        self._fake_quant_input = _get_fake_quant_type(
            activation_quantize_type,
451 452 453
            name=layer.full_name(),
            moving_rate=moving_rate,
            quant_bits=activation_bits,
H
huangxu96 已提交
454 455
            dtype=self._dtype,
            quant_on_weight=False)
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497

    def forward(self, input):
        quant_input = self._fake_quant_input(input)
        quant_weight = self._fake_quant_weight(self.weight)
        if in_dygraph_mode():
            pre_bias = _varbase_creator(dtype=input.dtype)
            core.ops.matmul(quant_input, quant_weight, pre_bias, 'transpose_X',
                            False, 'transpose_Y', False, "alpha", 1)
            pre_act = dygraph_utils._append_bias_in_dygraph(
                pre_bias, self.bias, axis=len(input.shape) - 1)

            return dygraph_utils._append_activation_in_dygraph(pre_act,
                                                               self._act)

        check_variable_and_dtype(input, 'input',
                                 ['float16', 'float32', 'float64'],
                                 "QuantizedLinear")
        attrs = {
            "transpose_X": False,
            "transpose_Y": False,
            "alpha": 1,
        }
        inputs = {"X": [quant_input], "Y": [quant_weight]}
        mul_out = self._helper.create_variable_for_type_inference(self._dtype)

        self._helper.append_op(
            type="matmul",
            inputs=inputs,
            outputs={"Out": [mul_out]},
            attrs=attrs)
        if self.bias is not None:
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [mul_out],
                        'Y': [self.bias]},
                outputs={'Out': [pre_activation]},
                attrs={'axis': len(input.shape) - 1})
        else:
            pre_activation = mul_out
        return self._helper.append_activation(pre_activation, act=self._act)
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572


class MovingAverageAbsMaxScale(layers.Layer):
    def __init__(self, name=None, moving_rate=0.9, dtype='float32'):
        """
        MovingAverageMaxScale layer is used to calculating the output quantization scale of Layer.
        Its computational formula is described as below:

        :math:`scale = (moving\_rate*accum+max(abs(x)))/(moving\_rate*state+1)`
        :math:`Out = X`
        """
        super(MovingAverageAbsMaxScale, self).__init__()
        self._moving_rate = moving_rate
        self._dtype = dtype

        scale_prefix = '{}.scale'.format(name) if name else 'outscale.scale'
        name = unique_name.generate(scale_prefix)
        scale_attr = ParamAttr(
            name=name, initializer=Constant(1), trainable=False)
        self._scale = self.create_parameter(
            shape=[1], attr=scale_attr, dtype=self._dtype)
        self._scale.stop_gradient = True

        state_prefix = "{}.state".format(name) if name else 'outscale.state'
        state_attr = ParamAttr(
            name=unique_name.generate(state_prefix),
            initializer=Constant(1),
            trainable=False)
        self._state = self.create_parameter(
            shape=[1], attr=state_attr, dtype=self._dtype)
        self._state.stop_gradient = True

        accum_prefix = "{}.accum".format(name) if name else 'outscale.accum'
        accum_attr = ParamAttr(
            name=unique_name.generate(accum_prefix),
            initializer=Constant(1),
            trainable=False)
        self._accum = self.create_parameter(
            shape=[1], attr=accum_attr, dtype=self._dtype)
        self._accum.stop_gradient = True
        MovingAverageAbsMaxScale._has_create = True

    def forward(self, input):
        if in_dygraph_mode():
            attrs = ('moving_rate', self._moving_rate, 'is_test',
                     not self.training)
            state = self._state if self.training else None
            accum = self._accum if self.training else None

            out_scale, _, _ = core.ops.moving_average_abs_max_scale(
                input, accum, state, self._scale, state, accum, *attrs)
            return out_scale

        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'MovingAverageAbsMaxScale')

        scale_out = self._scale
        attrs = {'moving_rate': self._moving_rate, 'is_test': not self.training}

        inputs = {"X": [input]}
        outputs = {"OutScale": [scale_out]}

        if self.training:
            inputs['InState'] = [self._state]
            inputs['InAccum'] = [self._accum]
            outputs['OutState'] = [self._state]
            outputs['OutAccum'] = [self._accum]

        self._helper.append_op(
            type="moving_average_abs_max_scale",
            inputs=inputs,
            outputs=outputs,
            attrs=attrs)

        return scale_out