adam_op.h 18.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
Y
Yang Yu 已提交
16
#include <math.h>  // for sqrt in CPU and CUDA
17
#include <Eigen/Dense>
S
sneaxiy 已提交
18
#include <vector>
Y
Yi Wang 已提交
19
#include "paddle/fluid/framework/op_registry.h"
Q
Qiao Longfei 已提交
20
#include "paddle/fluid/framework/threadpool.h"
Y
Yi Wang 已提交
21
#include "paddle/fluid/operators/detail/safe_ref.h"
S
sneaxiy 已提交
22
#include "paddle/fluid/operators/math/algorithm.h"
Y
Yi Wang 已提交
23 24
#include "paddle/fluid/operators/math/selected_rows_functor.h"
#include "paddle/fluid/platform/for_range.h"
25 26 27 28

namespace paddle {
namespace operators {

T
wip  
typhoonzero 已提交
29 30
namespace scatter = paddle::operators::math::scatter;

31 32 33 34 35 36
struct GPUAdam;
struct CPUAdam;

template <typename T, typename Flavour>
struct AdamFunctor;

Y
Yang Yu 已提交
37
template <typename T>
38
struct AdamFunctor<T, GPUAdam> {
Y
Yang Yu 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51
  T beta1_;
  T beta2_;
  T epsilon_;

  const T* beta1_pow_;
  const T* beta2_pow_;
  const T* moment1_;
  T* moment1_out_;
  const T* moment2_;
  T* moment2_out_;
  const T* lr_;
  const T* grad_;
  const T* param_;
Y
Yang Yu 已提交
52
  T* param_out_;
Y
Yang Yu 已提交
53 54 55

  AdamFunctor(T beta1, T beta2, T epsilon, const T* beta1_pow,
              const T* beta2_pow, const T* mom1, T* mom1_out, const T* mom2,
Y
Yang Yu 已提交
56 57
              T* mom2_out, const T* lr, const T* grad, const T* param,
              T* param_out)
Y
Yang Yu 已提交
58 59 60 61 62 63 64 65 66 67 68
      : beta1_(beta1),
        beta2_(beta2),
        epsilon_(epsilon),
        beta1_pow_(beta1_pow),
        beta2_pow_(beta2_pow),
        moment1_(mom1),
        moment1_out_(mom1_out),
        moment2_(mom2),
        moment2_out_(mom2_out),
        lr_(lr),
        grad_(grad),
Y
Yang Yu 已提交
69 70
        param_(param),
        param_out_(param_out) {}
Y
Yang Yu 已提交
71

Y
Yang Yu 已提交
72
  inline HOSTDEVICE void operator()(size_t i) const {
Y
Yang Yu 已提交
73 74 75 76 77 78 79
    // Merge all memory access together.
    T g = grad_[i];
    T mom1 = moment1_[i];
    T mom2 = moment2_[i];
    T lr = *lr_;
    T beta1_pow = *beta1_pow_;
    T beta2_pow = *beta2_pow_;
Y
Yang Yu 已提交
80
    T p = param_[i];
Y
Yang Yu 已提交
81 82

    // Calculation
Y
Yang Yu 已提交
83
    lr *= sqrt(1 - beta2_pow) / (1 - beta1_pow);
84

Y
Yang Yu 已提交
85 86
    mom1 = beta1_ * mom1 + (1 - beta1_) * g;
    mom2 = beta2_ * mom2 + (1 - beta2_) * g * g;
Y
Yang Yu 已提交
87
    p -= lr * (mom1 / (sqrt(mom2) + epsilon_));
Y
Yang Yu 已提交
88 89 90 91

    // Write back to global memory
    moment1_out_[i] = mom1;
    moment2_out_[i] = mom2;
Y
Yang Yu 已提交
92
    param_out_[i] = p;
Y
Yang Yu 已提交
93 94 95
  }
};

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
template <typename T>
struct AdamFunctor<T, CPUAdam> {
  T beta1_;
  T beta2_;
  T epsilon_;

  const T* beta1_pow_;
  const T* beta2_pow_;
  const T* moment1_;
  T* moment1_out_;
  const T* moment2_;
  T* moment2_out_;
  const T* lr_;
  const T* grad_;
  const T* param_;
  T* param_out_;

  AdamFunctor(T beta1, T beta2, T epsilon, const T* beta1_pow,
              const T* beta2_pow, const T* mom1, T* mom1_out, const T* mom2,
              T* mom2_out, const T* lr, const T* grad, const T* param,
              T* param_out)
      : beta1_(beta1),
        beta2_(beta2),
        epsilon_(epsilon),
        beta1_pow_(beta1_pow),
        beta2_pow_(beta2_pow),
        moment1_(mom1),
        moment1_out_(mom1_out),
        moment2_(mom2),
        moment2_out_(mom2_out),
        lr_(lr),
        grad_(grad),
        param_(param),
        param_out_(param_out) {}

  void operator()(size_t numel) const {
    Eigen::Map<const Eigen::Array<T, 1, Eigen::Dynamic>> g{
        grad_, static_cast<Eigen::Index>(numel)};
    Eigen::Map<const Eigen::Array<T, 1, Eigen::Dynamic>> mom1{
        moment1_, static_cast<Eigen::Index>(numel)};
    Eigen::Map<const Eigen::Array<T, 1, Eigen::Dynamic>> mom2{
        moment2_, static_cast<Eigen::Index>(numel)};
    Eigen::Map<const Eigen::Array<T, 1, Eigen::Dynamic>> param{
        param_, static_cast<Eigen::Index>(numel)};

    Eigen::Map<Eigen::Array<T, 1, Eigen::Dynamic>> param_out{
        param_out_, static_cast<Eigen::Index>(numel)};
    Eigen::Map<Eigen::Array<T, 1, Eigen::Dynamic>> moment1_out{
        moment1_out_, static_cast<Eigen::Index>(numel)};
    Eigen::Map<Eigen::Array<T, 1, Eigen::Dynamic>> moment2_out{
        moment2_out_, static_cast<Eigen::Index>(numel)};

    T lr = *lr_;
    T beta1_pow = *beta1_pow_;
    T beta2_pow = *beta2_pow_;

    // Calculation
    lr *= sqrt(1 - beta2_pow) / (1 - beta1_pow);

    moment1_out = beta1_ * mom1 + (1 - beta1_) * g;
    moment2_out = beta2_ * mom2 + (1 - beta2_) * g * g;
    param_out = param - lr * (moment1_out / (moment2_out.sqrt() + epsilon_));
  }
};

161 162 163
template <typename T, typename Flavour>
struct SparseAdamFunctor;

T
wip  
typhoonzero 已提交
164
template <typename T>
M
minqiyang 已提交
165
struct SparseAdamFunctor<T, GPUAdam> {
T
wip  
typhoonzero 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
  T beta1_;
  T beta2_;
  T epsilon_;

  const T* beta1_pow_;
  const T* beta2_pow_;
  const T* moment1_;
  T* moment1_out_;
  const T* moment2_;
  T* moment2_out_;
  const T* lr_;
  const T* grad_;
  const T* param_;
  T* param_out_;

  const int64_t* rows_;
  int64_t row_numel_;
S
sneaxiy 已提交
183
  int64_t row_count_;
Q
Qiao Longfei 已提交
184
  bool lazy_mode_;
T
wip  
typhoonzero 已提交
185 186 187 188 189

  SparseAdamFunctor(T beta1, T beta2, T epsilon, const T* beta1_pow,
                    const T* beta2_pow, const T* mom1, T* mom1_out,
                    const T* mom2, T* mom2_out, const T* lr, const T* grad,
                    const T* param, T* param_out, const int64_t* rows,
Q
Qiao Longfei 已提交
190
                    int64_t row_numel, int64_t row_count, bool lazy_mode)
T
wip  
typhoonzero 已提交
191 192 193 194 195 196 197 198 199 200 201 202 203 204
      : beta1_(beta1),
        beta2_(beta2),
        epsilon_(epsilon),
        beta1_pow_(beta1_pow),
        beta2_pow_(beta2_pow),
        moment1_(mom1),
        moment1_out_(mom1_out),
        moment2_(mom2),
        moment2_out_(mom2_out),
        lr_(lr),
        grad_(grad),
        param_(param),
        param_out_(param_out),
        rows_(rows),
S
sneaxiy 已提交
205
        row_numel_(row_numel),
Q
Qiao Longfei 已提交
206
        row_count_(row_count),
Q
Qiao Longfei 已提交
207
        lazy_mode_(lazy_mode) {}
S
sneaxiy 已提交
208

Q
Qiao Longfei 已提交
209
  inline HOSTDEVICE void adam_update(size_t i, T g) const {
S
sneaxiy 已提交
210 211 212 213
    // The following code is the same as dense
    T mom1 = moment1_[i];
    T mom2 = moment2_[i];
    T lr = *lr_;
T
typhoonzero 已提交
214 215
    T beta1_pow = *beta1_pow_;
    T beta2_pow = *beta2_pow_;
S
sneaxiy 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228
    T p = param_[i];

    // Calculation
    lr *= sqrt(1 - beta2_pow) / (1 - beta1_pow);

    mom1 = beta1_ * mom1 + (1 - beta1_) * g;
    mom2 = beta2_ * mom2 + (1 - beta2_) * g * g;
    p -= lr * (mom1 / (sqrt(mom2) + epsilon_));

    // Write back to global memory
    moment1_out_[i] = mom1;
    moment2_out_[i] = mom2;
    param_out_[i] = p;
T
wip  
typhoonzero 已提交
229
  }
Q
Qiao Longfei 已提交
230 231 232 233

  inline HOSTDEVICE void operator()(size_t i) const {
    auto row_idx =
        math::BinarySearch<int64_t>(rows_, row_count_, i / row_numel_);
Q
Qiao Longfei 已提交
234 235 236
    if (lazy_mode_ && row_idx < 0) {
      return;
    } else {
Q
Qiao Longfei 已提交
237 238 239
      T g = row_idx >= 0 ? grad_[row_idx * row_numel_ + i % row_numel_] : 0;
      adam_update(i, g);
    }
Q
Qiao Longfei 已提交
240
  }
T
wip  
typhoonzero 已提交
241 242
};

M
minqiyang 已提交
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
template <typename T>
struct SparseAdamFunctor<T, CPUAdam> {
  T beta1_;
  T beta2_;
  T epsilon_;

  const T* beta1_pow_;
  const T* beta2_pow_;
  const T* moment1_;
  T* moment1_out_;
  const T* moment2_;
  T* moment2_out_;
  const T* lr_;
  const T* grad_;
  const T* param_;
  T* param_out_;

  const int64_t* rows_;
  int64_t row_numel_;
  int64_t row_count_;

  SparseAdamFunctor(T beta1, T beta2, T epsilon, const T* beta1_pow,
                    const T* beta2_pow, const T* mom1, T* mom1_out,
                    const T* mom2, T* mom2_out, const T* lr, const T* grad,
                    const T* param, T* param_out, const int64_t* rows,
268
                    int64_t row_numel, int64_t row_count, bool lazy_mode)
M
minqiyang 已提交
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
      : beta1_(beta1),
        beta2_(beta2),
        epsilon_(epsilon),
        beta1_pow_(beta1_pow),
        beta2_pow_(beta2_pow),
        moment1_(mom1),
        moment1_out_(mom1_out),
        moment2_(mom2),
        moment2_out_(mom2_out),
        lr_(lr),
        grad_(grad),
        param_(param),
        param_out_(param_out),
        rows_(rows),
        row_numel_(row_numel),
        row_count_(row_count) {}

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
  inline HOSTDEVICE void adam_update(size_t i, T g) const {
    // The following code is the same as dense
    T mom1 = moment1_[i];
    T mom2 = moment2_[i];
    T lr = *lr_;
    T beta1_pow = *beta1_pow_;
    T beta2_pow = *beta2_pow_;
    T p = param_[i];

    // Calculation
    lr *= sqrt(1 - beta2_pow) / (1 - beta1_pow);

    mom1 = beta1_ * mom1 + (1 - beta1_) * g;
    mom2 = beta2_ * mom2 + (1 - beta2_) * g * g;
    p -= lr * (mom1 / (sqrt(mom2) + epsilon_));

    // Write back to global memory
    moment1_out_[i] = mom1;
    moment2_out_[i] = mom2;
    param_out_[i] = p;
  }

308 309 310 311 312 313 314
  inline void update_row(size_t row_id, int grad_row_offset) const {
    for (size_t i = 0U; i < row_numel_; ++i) {
      T g = grad_row_offset >= 0 ? grad_[grad_row_offset * row_numel_ + i] : 0;
      adam_update(row_id * row_numel_ + i, g);
    }
  }

M
minqiyang 已提交
315 316 317 318 319 320
  inline void operator()(size_t numel) const {
    // lr could be reuse
    T lr = *lr_;
    T beta1_pow = *beta1_pow_;
    T beta2_pow = *beta2_pow_;
    lr *= sqrt(1 - beta2_pow) / (1 - beta1_pow);
M
Fix bug  
minqiyang 已提交
321
    size_t row_count = numel / row_numel_;
M
minqiyang 已提交
322

M
Fix bug  
minqiyang 已提交
323
    for (size_t i = 0U, j = 0U; i != row_count; ++i) {
M
minqiyang 已提交
324
      if (i == *(rows_ + j)) {
M
Fix bug  
minqiyang 已提交
325 326
        for (size_t k = 0U; k != row_numel_; ++k) {
          T g = grad_[j * row_numel_ + k];
M
minqiyang 已提交
327
          adam_update(i * row_numel_ + k, g);
M
Fix bug  
minqiyang 已提交
328
        }
M
minqiyang 已提交
329 330
        ++j;
      } else {
M
Fix bug  
minqiyang 已提交
331 332 333 334 335 336 337 338 339 340 341 342 343 344
        for (size_t k = 0U; k != row_numel_; ++k) {
          T mom1 = moment1_[i * row_numel_ + k];
          T mom2 = moment2_[i * row_numel_ + k];
          T p = param_[i * row_numel_ + k];

          mom1 = beta1_ * mom1;
          mom2 = beta2_ * mom2;

          p -= lr * (mom1 / (sqrt(mom2) + epsilon_));
          // Write back to global memory
          moment1_out_[i * row_numel_ + k] = mom1;
          moment2_out_[i * row_numel_ + k] = mom2;
          param_out_[i * row_numel_ + k] = p;
        }
M
minqiyang 已提交
345 346 347 348 349
      }
    }
  }
};

Q
QI JUN 已提交
350
template <typename DeviceContext, typename T>
351 352 353
class AdamOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduo 已提交
354 355 356 357 358 359
    const auto* param_var = ctx.InputVar("Param");
    PADDLE_ENFORCE(param_var->IsType<framework::LoDTensor>(),
                   "The Var(%s)'s type should be LoDTensor, "
                   "but the received is %s",
                   ctx.Inputs("Param").front(), param_var->Type().name());

Y
Yang Yu 已提交
360 361
    using paddle::framework::LoDTensor;
    using paddle::operators::detail::Ref;
362

Q
Qiao Longfei 已提交
363
    bool lazy_mode = ctx.Attr<bool>("lazy_mode");
364 365 366
    T beta1 = static_cast<T>(ctx.Attr<float>("beta1"));
    T beta2 = static_cast<T>(ctx.Attr<float>("beta2"));
    T epsilon = static_cast<T>(ctx.Attr<float>("epsilon"));
Y
Yang Yu 已提交
367
    auto& param = Ref(ctx.Input<LoDTensor>("Param"), "Must set Param");
T
wip  
typhoonzero 已提交
368 369
    // auto& grad = Ref(ctx.Input<LoDTensor>("Grad"), "Must set Grad");
    auto* grad_var = ctx.InputVar("Grad");
Y
Yang Yu 已提交
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
    auto& mom1 = Ref(ctx.Input<LoDTensor>("Moment1"), "Must set Moment1");
    auto& mom2 = Ref(ctx.Input<LoDTensor>("Moment2"), "Must set Moment2");
    auto& lr =
        Ref(ctx.Input<LoDTensor>("LearningRate"), "Must set LearningRate");

    auto& beta1_pow =
        Ref(ctx.Input<LoDTensor>("Beta1Pow"), "Must set Beta1Pow");
    auto& beta2_pow =
        Ref(ctx.Input<LoDTensor>("Beta2Pow"), "Must set Beta2Pow");

    auto& param_out =
        Ref(ctx.Output<LoDTensor>("ParamOut"), "Must set ParamOut");
    auto& mom1_out =
        Ref(ctx.Output<LoDTensor>("Moment1Out"), "Must set Moment1Out");
    auto& mom2_out =
        Ref(ctx.Output<LoDTensor>("Moment2Out"), "Must set Moment1Out");

T
wip  
typhoonzero 已提交
387 388
    if (grad_var->IsType<framework::LoDTensor>()) {
      auto& grad = Ref(ctx.Input<LoDTensor>("Grad"), "Must set Grad");
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416

      if (platform::is_cpu_place(ctx.GetPlace())) {
        AdamFunctor<T, CPUAdam> functor(
            beta1, beta2, epsilon, beta1_pow.template data<T>(),
            beta2_pow.template data<T>(), mom1.template data<T>(),
            mom1_out.template mutable_data<T>(ctx.GetPlace()),
            mom2.template data<T>(),
            mom2_out.template mutable_data<T>(ctx.GetPlace()),
            lr.template data<T>(), grad.template data<T>(),
            param.template data<T>(),
            param_out.template mutable_data<T>(ctx.GetPlace()));
        functor(param.numel());
      } else if (platform::is_gpu_place(ctx.GetPlace())) {
        AdamFunctor<T, GPUAdam> functor(
            beta1, beta2, epsilon, beta1_pow.template data<T>(),
            beta2_pow.template data<T>(), mom1.template data<T>(),
            mom1_out.template mutable_data<T>(ctx.GetPlace()),
            mom2.template data<T>(),
            mom2_out.template mutable_data<T>(ctx.GetPlace()),
            lr.template data<T>(), grad.template data<T>(),
            param.template data<T>(),
            param_out.template mutable_data<T>(ctx.GetPlace()));

        platform::ForRange<DeviceContext> for_range(
            static_cast<const DeviceContext&>(ctx.device_context()),
            param.numel());
        for_range(functor);
      }
T
wip  
typhoonzero 已提交
417 418 419
    } else if (grad_var->IsType<framework::SelectedRows>()) {
      auto& grad =
          Ref(ctx.Input<framework::SelectedRows>("Grad"), "Must set Grad");
420
      if (grad.rows().size() == 0) {
M
minqiyang 已提交
421
        VLOG(3) << "grad row size is 0!!";
422 423
        return;
      }
S
sneaxiy 已提交
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444

      std::vector<int64_t> cpu_rows(grad.rows().begin(), grad.rows().end());
      bool is_strict_sorted = true;
      for (size_t i = 1; i < cpu_rows.size(); ++i) {
        if (cpu_rows[i - 1] >= cpu_rows[i]) {
          is_strict_sorted = false;
          break;
        }
      }

      const framework::SelectedRows* grad_merge_ptr;
      if (is_strict_sorted) {
        grad_merge_ptr = &grad;
      } else {
        // merge duplicated rows if any.
        // The rows of grad_merge have been sorted inside MergeAdd functor
        scatter::MergeAdd<DeviceContext, T> merge_func;
        auto* grad_merge_var = const_cast<framework::Scope&>(ctx.scope())
                                   .Var()
                                   ->GetMutable<framework::SelectedRows>();
        merge_func(ctx.template device_context<DeviceContext>(), grad,
445
                   grad_merge_var, true);
S
sneaxiy 已提交
446 447 448 449
        grad_merge_ptr = grad_merge_var;
      }

      auto& grad_merge = *grad_merge_ptr;
T
wip  
typhoonzero 已提交
450
      auto& grad_tensor = grad_merge.value();
T
wip  
typhoonzero 已提交
451
      const T* grad_data = grad_tensor.template data<T>();
S
sneaxiy 已提交
452 453
      const int64_t* rows = nullptr;
// When compiled without CUDA, the CUDAData() interface should not be
454 455
// provided.
#if defined(PADDLE_WITH_CUDA)
D
dzhwinter 已提交
456
      if (platform::is_gpu_place(ctx.GetPlace())) {
S
sneaxiy 已提交
457
        rows = grad_merge.rows().CUDAData(ctx.GetPlace());
D
dzhwinter 已提交
458
      } else {
459
#endif
S
sneaxiy 已提交
460
        rows = grad_merge.rows().data();
461
#if defined(PADDLE_WITH_CUDA)
D
dzhwinter 已提交
462
      }
463
#endif
T
wip  
typhoonzero 已提交
464
      auto row_numel = grad_tensor.numel() / grad_merge.rows().size();
T
wip  
typhoonzero 已提交
465

M
minqiyang 已提交
466 467
      if (platform::is_cpu_place(ctx.GetPlace())) {
        SparseAdamFunctor<T, CPUAdam> functor(
Q
Qiao Longfei 已提交
468 469 470 471 472 473 474 475
            beta1, beta2, epsilon, beta1_pow.template data<T>(),
            beta2_pow.template data<T>(), mom1.template data<T>(),
            mom1_out.template mutable_data<T>(ctx.GetPlace()),
            mom2.template data<T>(),
            mom2_out.template mutable_data<T>(ctx.GetPlace()),
            lr.template data<T>(), grad_data, param.template data<T>(),
            param_out.template mutable_data<T>(ctx.GetPlace()), rows, row_numel,
            grad_merge.rows().size(), lazy_mode);
476 477 478 479 480 481 482 483 484 485 486 487 488
        // multi thread speedup
        if (FLAGS_inner_op_parallelism > 1 &&
            FLAGS_min_param_size_to_use_multithread > 0 &&
            param.numel() > FLAGS_min_param_size_to_use_multithread) {
          VLOG(3) << "use multi thread, inner_op_parallelism="
                  << FLAGS_inner_op_parallelism
                  << " min_param_size_to_use_multithread="
                  << FLAGS_min_param_size_to_use_multithread;
          auto& grad_rows = grad_merge.rows();
          std::unordered_map<size_t, int> row_id_to_grad_row_offset;
          size_t param_row_count = param.numel() / row_numel;
          for (size_t i = 0; i < param_row_count; ++i) {
            row_id_to_grad_row_offset[i] = -1;
Q
Qiao Longfei 已提交
489
          }
490 491
          for (size_t i = 0; i < grad_rows.size(); ++i) {
            row_id_to_grad_row_offset[grad_rows[i]] = i;
Q
Qiao Longfei 已提交
492
          }
493
          std::vector<std::future<void>> fs;
Q
Qiao Longfei 已提交
494 495
          int64_t line_in_each_thread =
              param_row_count / FLAGS_inner_op_parallelism;
496 497 498 499 500
          for (int i = 0; i < FLAGS_inner_op_parallelism; ++i) {
            int64_t start = i * line_in_each_thread;
            int64_t end = (i + 1) * line_in_each_thread;
            if (end > param_row_count) {
              end = param_row_count;
Q
Qiao Longfei 已提交
501
            }
Q
Qiao Longfei 已提交
502 503 504 505 506 507
            fs.push_back(framework::Async(
                [&functor, &row_id_to_grad_row_offset, start, end]() {
                  for (int64_t i = start; i < end; ++i) {
                    functor.update_row(i, row_id_to_grad_row_offset[i]);
                  }
                }));
Q
Qiao Longfei 已提交
508
          }
509
          for (size_t i = 0; i < fs.size(); ++i) fs[i].wait();
510
        } else {
511 512 513 514 515 516
          if (lazy_mode) {
            size_t row_count = grad_merge.rows().size();
            std::vector<int64_t> cpu_rows(grad_merge.rows());
            for (size_t row_index = 0; row_index < row_count; ++row_index) {
              for (size_t offset = 0; offset < row_numel; ++offset) {
                size_t i = cpu_rows[row_index] * row_numel + offset;
Q
Qiao Longfei 已提交
517 518
                functor.adam_update(i,
                                    grad_data[row_index * row_numel + offset]);
519 520 521 522 523
              }
            }
          } else {
            functor(param.numel());
          }
Q
Qiao Longfei 已提交
524
        }
M
minqiyang 已提交
525 526 527 528 529 530 531 532 533
      } else if (platform::is_gpu_place(ctx.GetPlace())) {
        SparseAdamFunctor<T, GPUAdam> functor(
            beta1, beta2, epsilon, beta1_pow.template data<T>(),
            beta2_pow.template data<T>(), mom1.template data<T>(),
            mom1_out.template mutable_data<T>(ctx.GetPlace()),
            mom2.template data<T>(),
            mom2_out.template mutable_data<T>(ctx.GetPlace()),
            lr.template data<T>(), grad_data, param.template data<T>(),
            param_out.template mutable_data<T>(ctx.GetPlace()), rows, row_numel,
534
            grad_merge.rows().size(), lazy_mode);
M
minqiyang 已提交
535 536

        // FIXME(minqiyang): remove BinarySearch in GPU later
Q
Qiao Longfei 已提交
537 538 539 540 541
        platform::ForRange<DeviceContext> for_range(
            static_cast<const DeviceContext&>(ctx.device_context()),
            param.numel());
        for_range(functor);
      }
T
wip  
typhoonzero 已提交
542 543 544
    } else {
      PADDLE_THROW("Variable type not supported by adam_op");
    }
545 546 547 548 549
  }
};

}  // namespace operators
}  // namespace paddle