test_word2vec.py 10.2 KB
Newer Older
D
dzhwinter 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
L
Liu Yiqun 已提交
2 3
#
# Licensed under the Apache License, Version 2.0 (the "License");
D
dzhwinter 已提交
4 5
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
16
import paddle.fluid as fluid
Y
Yang Yu 已提交
17
import unittest
Y
Yang Yu 已提交
18
import os
19
import numpy as np
20 21
import math
import sys
Q
QI JUN 已提交
22

Y
Yang Yu 已提交
23

武毅 已提交
24
def train(use_cuda, is_sparse, is_parallel, save_dirname, is_local=True):
Y
Yang Yu 已提交
25 26 27 28 29
    PASS_NUM = 100
    EMBED_SIZE = 32
    HIDDEN_SIZE = 256
    N = 5
    BATCH_SIZE = 32
Y
Yang Yu 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
    IS_SPARSE = is_sparse

    def __network__(words):
        embed_first = fluid.layers.embedding(
            input=words[0],
            size=[dict_size, EMBED_SIZE],
            dtype='float32',
            is_sparse=IS_SPARSE,
            param_attr='shared_w')
        embed_second = fluid.layers.embedding(
            input=words[1],
            size=[dict_size, EMBED_SIZE],
            dtype='float32',
            is_sparse=IS_SPARSE,
            param_attr='shared_w')
        embed_third = fluid.layers.embedding(
            input=words[2],
            size=[dict_size, EMBED_SIZE],
            dtype='float32',
            is_sparse=IS_SPARSE,
            param_attr='shared_w')
        embed_forth = fluid.layers.embedding(
            input=words[3],
            size=[dict_size, EMBED_SIZE],
            dtype='float32',
            is_sparse=IS_SPARSE,
            param_attr='shared_w')

        concat_embed = fluid.layers.concat(
            input=[embed_first, embed_second, embed_third, embed_forth], axis=1)
        hidden1 = fluid.layers.fc(input=concat_embed,
                                  size=HIDDEN_SIZE,
                                  act='sigmoid')
        predict_word = fluid.layers.fc(input=hidden1,
                                       size=dict_size,
                                       act='softmax')
        cost = fluid.layers.cross_entropy(input=predict_word, label=words[4])
Y
Yu Yang 已提交
67
        avg_cost = fluid.layers.mean(cost)
68
        return avg_cost, predict_word
Y
Yang Yu 已提交
69 70 71 72 73 74 75 76 77 78

    word_dict = paddle.dataset.imikolov.build_dict()
    dict_size = len(word_dict)

    first_word = fluid.layers.data(name='firstw', shape=[1], dtype='int64')
    second_word = fluid.layers.data(name='secondw', shape=[1], dtype='int64')
    third_word = fluid.layers.data(name='thirdw', shape=[1], dtype='int64')
    forth_word = fluid.layers.data(name='forthw', shape=[1], dtype='int64')
    next_word = fluid.layers.data(name='nextw', shape=[1], dtype='int64')

L
Liu Yiqun 已提交
79
    if not is_parallel:
80
        avg_cost, predict_word = __network__(
Y
Yang Yu 已提交
81 82 83 84 85
            [first_word, second_word, third_word, forth_word, next_word])
    else:
        places = fluid.layers.get_places()
        pd = fluid.layers.ParallelDo(places)
        with pd.do():
86
            avg_cost, predict_word = __network__(
Y
Yang Yu 已提交
87 88 89 90 91
                map(pd.read_input, [
                    first_word, second_word, third_word, forth_word, next_word
                ]))
            pd.write_output(avg_cost)

Y
Yu Yang 已提交
92
        avg_cost = fluid.layers.mean(pd())
Y
Yang Yu 已提交
93

Y
Yang Yu 已提交
94
    sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
W
Wu Yi 已提交
95
    sgd_optimizer.minimize(avg_cost)
Y
Yang Yu 已提交
96 97 98 99 100 101 102 103 104 105

    train_reader = paddle.batch(
        paddle.dataset.imikolov.train(word_dict, N), BATCH_SIZE)

    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)
    feeder = fluid.DataFeeder(
        feed_list=[first_word, second_word, third_word, forth_word, next_word],
        place=place)

武毅 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
    def train_loop(main_program):
        exe.run(fluid.default_startup_program())

        for pass_id in range(PASS_NUM):
            for data in train_reader():
                avg_cost_np = exe.run(main_program,
                                      feed=feeder.feed(data),
                                      fetch_list=[avg_cost])
                if avg_cost_np[0] < 5.0:
                    if save_dirname is not None:
                        fluid.io.save_inference_model(save_dirname, [
                            'firstw', 'secondw', 'thirdw', 'forthw'
                        ], [predict_word], exe)
                    return
                if math.isnan(float(avg_cost_np[0])):
                    sys.exit("got NaN loss, training failed.")

        raise AssertionError("Cost is too large {0:2.2}".format(avg_cost_np[0]))

    if is_local:
        train_loop(fluid.default_main_program())
    else:
G
gongweibao 已提交
128 129
        port = os.getenv("PADDLE_PSERVER_PORT", "6174")
        pserver_ips = os.getenv("PADDLE_PSERVER_IPS")  # ip,ip...
武毅 已提交
130 131 132 133
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)  # ip:port,ip:port...
G
gongweibao 已提交
134
        trainers = int(os.getenv("PADDLE_TRAINERS"))
武毅 已提交
135
        current_endpoint = os.getenv("POD_IP") + ":" + port
G
gongweibao 已提交
136 137
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
        training_role = os.getenv("PADDLE_TRAINING_ROLE", "TRAINER")
武毅 已提交
138
        t = fluid.DistributeTranspiler()
Y
Yancey1989 已提交
139
        t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
武毅 已提交
140 141 142 143 144 145 146 147
        if training_role == "PSERVER":
            pserver_prog = t.get_pserver_program(current_endpoint)
            pserver_startup = t.get_startup_program(current_endpoint,
                                                    pserver_prog)
            exe.run(pserver_startup)
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
            train_loop(t.get_trainer_program())
Y
Yang Yu 已提交
148 149


L
Liu Yiqun 已提交
150 151 152 153 154 155 156
def infer(use_cuda, save_dirname=None):
    if save_dirname is None:
        return

    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)

157 158 159 160 161 162 163 164 165 166 167 168
    inference_scope = fluid.core.Scope()
    with fluid.scope_guard(inference_scope):
        # Use fluid.io.load_inference_model to obtain the inference program desc,
        # the feed_target_names (the names of variables that will be feeded
        # data using feed operators), and the fetch_targets (variables that
        # we want to obtain data from using fetch operators).
        [inference_program, feed_target_names,
         fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)

        word_dict = paddle.dataset.imikolov.build_dict()
        dict_size = len(word_dict)

169 170
        # Setup inputs by creating 4 LoDTensors representing 4 words. Here each word 
        # is simply an index to look up for the corresponding word vector and hence 
171 172 173 174 175 176
        # the shape of word (base_shape) should be [1]. The recursive_sequence_lengths, 
        # which is length-based level of detail (lod) of each LoDTensor, should be [[1]] 
        # meaning there is only one level of detail and there is only one sequence of 
        # one word on this level.
        # Note that recursive_sequence_lengths should be a list of lists.
        recursive_seq_lens = [[1]]
177
        base_shape = [1]
K
Kexin Zhao 已提交
178
        # The range of random integers is [low, high]
179
        first_word = fluid.create_random_int_lodtensor(
180
            recursive_seq_lens, base_shape, place, low=0, high=dict_size - 1)
181
        second_word = fluid.create_random_int_lodtensor(
182
            recursive_seq_lens, base_shape, place, low=0, high=dict_size - 1)
183
        third_word = fluid.create_random_int_lodtensor(
184
            recursive_seq_lens, base_shape, place, low=0, high=dict_size - 1)
185
        fourth_word = fluid.create_random_int_lodtensor(
186
            recursive_seq_lens, base_shape, place, low=0, high=dict_size - 1)
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203

        assert feed_target_names[0] == 'firstw'
        assert feed_target_names[1] == 'secondw'
        assert feed_target_names[2] == 'thirdw'
        assert feed_target_names[3] == 'forthw'

        # Construct feed as a dictionary of {feed_target_name: feed_target_data}
        # and results will contain a list of data corresponding to fetch_targets.
        results = exe.run(inference_program,
                          feed={
                              feed_target_names[0]: first_word,
                              feed_target_names[1]: second_word,
                              feed_target_names[2]: third_word,
                              feed_target_names[3]: fourth_word
                          },
                          fetch_list=fetch_targets,
                          return_numpy=False)
204
        print(results[0].recursive_sequence_lengths())
205 206
        np_data = np.array(results[0])
        print("Inference Shape: ", np_data.shape)
L
Liu Yiqun 已提交
207 208 209


def main(use_cuda, is_sparse, is_parallel):
210 211
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return
L
Liu Yiqun 已提交
212 213 214 215 216 217 218

    if not is_parallel:
        save_dirname = "word2vec.inference.model"
    else:
        save_dirname = None

    train(use_cuda, is_sparse, is_parallel, save_dirname)
219 220 221
    infer(use_cuda, save_dirname)


Y
Yang Yu 已提交
222
FULL_TEST = os.getenv('FULL_TEST',
Y
Yang Yu 已提交
223
                      '0').lower() in ['true', '1', 't', 'y', 'yes', 'on']
Y
Yang Yu 已提交
224
SKIP_REASON = "Only run minimum number of tests in CI server, to make CI faster"
Y
Yang Yu 已提交
225 226 227


class W2VTest(unittest.TestCase):
Y
Yang Yu 已提交
228 229 230
    pass


L
Liu Yiqun 已提交
231
def inject_test_method(use_cuda, is_sparse, is_parallel):
Y
Yang Yu 已提交
232 233
    fn_name = "test_{0}_{1}_{2}".format("cuda" if use_cuda else "cpu", "sparse"
                                        if is_sparse else "dense", "parallel"
L
Liu Yiqun 已提交
234
                                        if is_parallel else "normal")
Y
Yang Yu 已提交
235 236 237 238 239 240 241

    def __impl__(*args, **kwargs):
        prog = fluid.Program()
        startup_prog = fluid.Program()
        scope = fluid.core.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(prog, startup_prog):
L
Liu Yiqun 已提交
242 243 244 245
                main(
                    use_cuda=use_cuda,
                    is_sparse=is_sparse,
                    is_parallel=is_parallel)
Y
Yang Yu 已提交
246

L
Liu Yiqun 已提交
247
    if use_cuda and is_sparse:
Y
Yang Yu 已提交
248 249 250 251 252 253 254
        fn = __impl__
    else:
        # skip the other test when on CI server
        fn = unittest.skipUnless(
            condition=FULL_TEST, reason=SKIP_REASON)(__impl__)

    setattr(W2VTest, fn_name, fn)
Y
Yang Yu 已提交
255 256


Y
Yang Yu 已提交
257 258
for use_cuda in (False, True):
    for is_sparse in (False, True):
L
Liu Yiqun 已提交
259 260
        for is_parallel in (False, True):
            inject_test_method(use_cuda, is_sparse, is_parallel)
Y
Yang Yu 已提交
261 262 263

if __name__ == '__main__':
    unittest.main()