test_imperative_deepcf.py 11.2 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
import random
X
Xin Pan 已提交
18
import os
X
Xin Pan 已提交
19 20 21 22 23 24
import sys

import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from test_imperative_base import new_program_scope
L
lujun 已提交
25
from paddle.fluid.dygraph.base import to_variable
X
Xin Pan 已提交
26

X
polish  
Xin Pan 已提交
27
# Can use Amusic dataset as the DeepCF describes.
X
Xin Pan 已提交
28
DATA_PATH = os.environ.get('DATA_PATH', '')
X
polish  
Xin Pan 已提交
29 30 31

BATCH_SIZE = int(os.environ.get('BATCH_SIZE', 128))
NUM_BATCHES = int(os.environ.get('NUM_BATCHES', 5))
X
Xin Pan 已提交
32
NUM_EPOCHES = int(os.environ.get('NUM_EPOCHES', 1))
X
Xin Pan 已提交
33 34


35
class DMF(fluid.Layer):
X
Xin Pan 已提交
36
    def __init__(self, name_scope):
X
Xin Pan 已提交
37
        super(DMF, self).__init__(name_scope)
38 39
        self._user_latent = fluid.FC(self.full_name(), 256)
        self._item_latent = fluid.FC(self.full_name(), 256)
X
Xin Pan 已提交
40 41 42 43 44 45 46 47

        self._user_layers = []
        self._item_layers = []
        self._hid_sizes = [128, 64]
        for i in range(len(self._hid_sizes)):
            self._user_layers.append(
                self.add_sublayer(
                    'user_layer_%d' % i,
48
                    fluid.FC(self.full_name(), self._hid_sizes[i], act='relu')))
X
Xin Pan 已提交
49 50 51
            self._item_layers.append(
                self.add_sublayer(
                    'item_layer_%d' % i,
52
                    fluid.FC(self.full_name(), self._hid_sizes[i], act='relu')))
X
Xin Pan 已提交
53 54 55 56 57 58 59 60 61 62 63

    def forward(self, users, items):
        users = self._user_latent(users)
        items = self._item_latent(items)

        for ul, il in zip(self._user_layers, self._item_layers):
            users = ul(users)
            items = il(items)
        return fluid.layers.elementwise_mul(users, items)


64
class MLP(fluid.Layer):
X
Xin Pan 已提交
65
    def __init__(self, name_scope):
X
Xin Pan 已提交
66
        super(MLP, self).__init__(name_scope)
67 68
        self._user_latent = fluid.FC(self.full_name(), 256)
        self._item_latent = fluid.FC(self.full_name(), 256)
X
Xin Pan 已提交
69 70 71 72 73 74
        self._match_layers = []
        self._hid_sizes = [128, 64]
        for i in range(len(self._hid_sizes)):
            self._match_layers.append(
                self.add_sublayer(
                    'match_layer_%d' % i,
75
                    fluid.FC(self.full_name(), self._hid_sizes[i], act='relu')))
X
Xin Pan 已提交
76 77 78 79 80 81 82 83 84 85 86

    def forward(self, users, items):
        users = self._user_latent(users)
        items = self._item_latent(items)
        match_vec = fluid.layers.concat(
            [users, items], axis=len(users.shape) - 1)
        for l in self._match_layers:
            match_vec = l(match_vec)
        return match_vec


87
class DeepCF(fluid.Layer):
X
Xin Pan 已提交
88
    def __init__(self, name_scope, num_users, num_items, matrix):
X
Xin Pan 已提交
89
        super(DeepCF, self).__init__(name_scope)
X
Xin Pan 已提交
90 91 92
        self._num_users = num_users
        self._num_items = num_items
        self._rating_matrix = self.create_parameter(
X
polish  
Xin Pan 已提交
93
            fluid.ParamAttr(trainable=False),
X
Xin Pan 已提交
94 95 96 97
            matrix.shape,
            matrix.dtype,
            is_bias=False,
            default_initializer=fluid.initializer.NumpyArrayInitializer(matrix))
98
        self._rating_matrix.stop_gradient = True
X
Xin Pan 已提交
99 100 101

        self._mlp = MLP(self.full_name())
        self._dmf = DMF(self.full_name())
102
        self._match_fc = fluid.FC(self.full_name(), 1, act='sigmoid')
X
Xin Pan 已提交
103 104

    def forward(self, users, items):
X
Xin Pan 已提交
105 106 107 108 109 110 111
        # users_emb = self._user_emb(users)
        # items_emb = self._item_emb(items)
        users_emb = fluid.layers.gather(self._rating_matrix, users)
        items_emb = fluid.layers.gather(
            fluid.layers.transpose(self._rating_matrix, [1, 0]), items)
        users_emb.stop_gradient = True
        items_emb.stop_gradient = True
X
Xin Pan 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125

        mlp_predictive = self._mlp(users_emb, items_emb)
        dmf_predictive = self._dmf(users_emb, items_emb)
        predictive = fluid.layers.concat(
            [mlp_predictive, dmf_predictive],
            axis=len(mlp_predictive.shape) - 1)
        prediction = self._match_fc(predictive)
        return prediction


def get_data():
    user_ids = []
    item_ids = []
    labels = []
X
Xin Pan 已提交
126 127
    NUM_USERS = 100
    NUM_ITEMS = 1000
X
polish  
Xin Pan 已提交
128 129
    matrix = np.zeros([NUM_USERS, NUM_ITEMS], dtype=np.float32)

X
Xin Pan 已提交
130 131
    for uid in range(NUM_USERS):
        for iid in range(NUM_ITEMS):
X
Xin Pan 已提交
132
            label = float(random.randint(1, 6) == 1)
X
Xin Pan 已提交
133 134 135
            user_ids.append(uid)
            item_ids.append(iid)
            labels.append(label)
X
Xin Pan 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
            matrix[uid, iid] = label
    indices = np.arange(len(user_ids))
    np.random.shuffle(indices)
    users_np = np.array(user_ids, dtype=np.int32)[indices]
    items_np = np.array(item_ids, dtype=np.int32)[indices]
    labels_np = np.array(labels, dtype=np.float32)[indices]
    return np.expand_dims(users_np, -1), \
           np.expand_dims(items_np, -1), \
           np.expand_dims(labels_np, -1), NUM_USERS, NUM_ITEMS, matrix


def load_data(DATA_PATH):
    sys.stderr.write('loading from %s\n' % DATA_PATH)
    likes = dict()
    num_users = -1
    num_items = -1
    with open(DATA_PATH, 'r') as f:
        for l in f.readlines():
            uid, iid, rating = [int(v) for v in l.split('\t')]
            num_users = max(num_users, uid + 1)
            num_items = max(num_items, iid + 1)
            if float(rating) > 0.0:
                likes[(uid, iid)] = 1.0

    user_ids = []
    item_ids = []
    labels = []
    matrix = np.zeros([num_users, num_items], dtype=np.float32)
    for uid, iid in likes.keys():
        user_ids.append(uid)
        item_ids.append(iid)
        labels.append(1.0)
        matrix[uid, iid] = 1.0

        negative = 0
        while negative < 3:
            nuid = random.randint(0, num_users - 1)
            niid = random.randint(0, num_items - 1)
            if (nuid, niid) not in likes:
                negative += 1
                user_ids.append(nuid)
                item_ids.append(niid)
                labels.append(0.0)

    indices = np.arange(len(user_ids))
X
Xin Pan 已提交
181
    np.random.shuffle(indices)
X
Xin Pan 已提交
182 183
    users_np = np.array(user_ids, dtype=np.int32)[indices]
    items_np = np.array(item_ids, dtype=np.int32)[indices]
X
Xin Pan 已提交
184 185 186
    labels_np = np.array(labels, dtype=np.float32)[indices]
    return np.expand_dims(users_np, -1), \
           np.expand_dims(items_np, -1), \
X
Xin Pan 已提交
187
           np.expand_dims(labels_np, -1), num_users, num_items, matrix
X
Xin Pan 已提交
188 189


L
lujun 已提交
190
class TestDygraphDeepCF(unittest.TestCase):
X
Xin Pan 已提交
191
    def test_deefcf(self):
X
Xin Pan 已提交
192
        seed = 90
X
Xin Pan 已提交
193 194 195 196 197 198
        if DATA_PATH:
            (users_np, items_np, labels_np, num_users, num_items,
             matrix) = load_data(DATA_PATH)
        else:
            (users_np, items_np, labels_np, num_users, num_items,
             matrix) = get_data()
X
Xin Pan 已提交
199 200 201 202 203

        startup = fluid.Program()
        startup.random_seed = seed
        main = fluid.Program()
        main.random_seed = seed
X
polish  
Xin Pan 已提交
204

X
Xin Pan 已提交
205 206
        scope = fluid.core.Scope()
        with new_program_scope(main=main, startup=startup, scope=scope):
X
Xin Pan 已提交
207 208
            users = fluid.layers.data('users', [1], dtype='int32')
            items = fluid.layers.data('items', [1], dtype='int32')
X
Xin Pan 已提交
209 210
            labels = fluid.layers.data('labels', [1], dtype='float32')

X
Xin Pan 已提交
211
            deepcf = DeepCF('deepcf', num_users, num_items, matrix)
X
Xin Pan 已提交
212 213 214 215 216 217 218 219 220
            prediction = deepcf(users, items)
            loss = fluid.layers.reduce_sum(
                fluid.layers.log_loss(prediction, labels))
            adam = fluid.optimizer.AdamOptimizer(0.01)
            adam.minimize(loss)

            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
            exe.run(startup)
X
Xin Pan 已提交
221 222 223 224 225 226 227 228 229 230 231 232 233 234
            for e in range(NUM_EPOCHES):
                sys.stderr.write('epoch %d\n' % e)
                for slice in range(0, BATCH_SIZE * NUM_BATCHES, BATCH_SIZE):
                    if slice + BATCH_SIZE >= users_np.shape[0]:
                        break
                    static_loss = exe.run(
                        main,
                        feed={
                            users.name: users_np[slice:slice + BATCH_SIZE],
                            items.name: items_np[slice:slice + BATCH_SIZE],
                            labels.name: labels_np[slice:slice + BATCH_SIZE]
                        },
                        fetch_list=[loss])[0]
                    sys.stderr.write('static loss %s\n' % static_loss)
X
Xin Pan 已提交
235

L
lujun 已提交
236
        with fluid.dygraph.guard():
X
Xin Pan 已提交
237 238 239
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

X
Xin Pan 已提交
240
            deepcf = DeepCF('deepcf', num_users, num_items, matrix)
X
polish  
Xin Pan 已提交
241
            adam = fluid.optimizer.AdamOptimizer(0.01)
X
Xin Pan 已提交
242 243 244
            for e in range(NUM_EPOCHES):
                sys.stderr.write('epoch %d\n' % e)
                for slice in range(0, BATCH_SIZE * NUM_BATCHES, BATCH_SIZE):
X
polish  
Xin Pan 已提交
245 246
                    if slice + BATCH_SIZE >= users_np.shape[0]:
                        break
X
Xin Pan 已提交
247 248 249 250 251 252 253
                    prediction = deepcf(
                        to_variable(users_np[slice:slice + BATCH_SIZE]),
                        to_variable(items_np[slice:slice + BATCH_SIZE]))
                    loss = fluid.layers.reduce_sum(
                        fluid.layers.log_loss(prediction,
                                              to_variable(labels_np[
                                                  slice:slice + BATCH_SIZE])))
L
lujun 已提交
254
                    loss.backward()
X
Xin Pan 已提交
255 256
                    adam.minimize(loss)
                    deepcf.clear_gradients()
257
                    dy_loss = loss.numpy()
X
polish  
Xin Pan 已提交
258
                    sys.stderr.write('dynamic loss: %s %s\n' % (slice, dy_loss))
X
Xin Pan 已提交
259

260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
        with fluid.dygraph.guard():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

            deepcf2 = DeepCF('deepcf', num_users, num_items, matrix)
            adam2 = fluid.optimizer.AdamOptimizer(0.01)
            backward_strategy = fluid.dygraph.BackwardStrategy()
            backward_strategy.sort_sum_gradient = True
            for e in range(NUM_EPOCHES):
                sys.stderr.write('epoch %d\n' % e)
                for slice in range(0, BATCH_SIZE * NUM_BATCHES, BATCH_SIZE):
                    if slice + BATCH_SIZE >= users_np.shape[0]:
                        break
                    prediction2 = deepcf2(
                        to_variable(users_np[slice:slice + BATCH_SIZE]),
                        to_variable(items_np[slice:slice + BATCH_SIZE]))
                    loss2 = fluid.layers.reduce_sum(
                        fluid.layers.log_loss(prediction2,
                                              to_variable(labels_np[
                                                  slice:slice + BATCH_SIZE])))
                    loss2.backward(backward_strategy)
                    adam2.minimize(loss2)
                    deepcf2.clear_gradients()
                    dy_loss2 = loss2.numpy()
                    sys.stderr.write('dynamic loss: %s %s\n' %
                                     (slice, dy_loss2))

X
Xin Pan 已提交
287
        self.assertEqual(static_loss, dy_loss)
288
        self.assertEqual(static_loss, dy_loss2)
X
Xin Pan 已提交
289 290 291 292


if __name__ == '__main__':
    unittest.main()