analyzer_tester.cc 13.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/analysis/analyzer.h"
16

17
#include <google/protobuf/text_format.h>
18
#include <gtest/gtest.h>
L
luotao1 已提交
19
#include <thread>  // NOLINT
Y
Yan Chunwei 已提交
20
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
21
#include "paddle/fluid/framework/ir/pass.h"
22
#include "paddle/fluid/inference/analysis/ut_helper.h"
Y
Yan Chunwei 已提交
23
#include "paddle/fluid/inference/api/analysis_predictor.h"
24
#include "paddle/fluid/inference/api/helper.h"
25
#include "paddle/fluid/inference/api/paddle_inference_api.h"
Y
Yan Chunwei 已提交
26
#include "paddle/fluid/inference/utils/singleton.h"
27

28 29
DEFINE_string(infer_ditu_rnn_model, "", "model path for ditu RNN");
DEFINE_string(infer_ditu_rnn_data, "", "data path for ditu RNN");
30 31
DEFINE_int32(batch_size, 10, "batch size.");
DEFINE_int32(repeat, 1, "Running the inference program repeat times.");
L
luotao1 已提交
32
DEFINE_int32(num_threads, 1, "Running the inference program in multi-threads.");
33

34 35 36 37
namespace paddle {
namespace inference {
namespace analysis {

Y
Yan Chunwei 已提交
38
TEST(Analyzer, analysis_without_tensorrt) {
39
  FLAGS_IA_enable_tensorrt_subgraph_engine = false;
Y
Yan Chunwei 已提交
40 41
  Argument argument;
  argument.fluid_model_dir.reset(new std::string(FLAGS_inference_model_dir));
42 43 44 45
  Analyzer analyser;
  analyser.Run(&argument);
}

Y
Yan Chunwei 已提交
46
TEST(Analyzer, analysis_with_tensorrt) {
47
  FLAGS_IA_enable_tensorrt_subgraph_engine = true;
Y
Yan Chunwei 已提交
48 49
  Argument argument;
  argument.fluid_model_dir.reset(new std::string(FLAGS_inference_model_dir));
50 51 52 53
  Analyzer analyser;
  analyser.Run(&argument);
}

54
void TestWord2vecPrediction(const std::string &model_path) {
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
  NativeConfig config;
  config.model_dir = model_path;
  config.use_gpu = false;
  config.device = 0;
  auto predictor =
      ::paddle::CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(
          config);

  // One single batch

  int64_t data[4] = {1, 2, 3, 4};
  PaddleTensor tensor;
  tensor.shape = std::vector<int>({4, 1});
  tensor.data = PaddleBuf(data, sizeof(data));
  tensor.dtype = PaddleDType::INT64;

  // For simplicity, we set all the slots with the same data.
  std::vector<PaddleTensor> slots(4, tensor);
  std::vector<PaddleTensor> outputs;
  CHECK(predictor->Run(slots, &outputs));

  PADDLE_ENFORCE(outputs.size(), 1UL);
  // Check the output buffer size and result of each tid.
  PADDLE_ENFORCE(outputs.front().data.length(), 33168UL);
  float result[5] = {0.00129761, 0.00151112, 0.000423564, 0.00108815,
                     0.000932706};
  const size_t num_elements = outputs.front().data.length() / sizeof(float);
  // The outputs' buffers are in CPU memory.
  for (size_t i = 0; i < std::min(5UL, num_elements); i++) {
    LOG(INFO) << "data: "
85 86
              << static_cast<float *>(outputs.front().data.data())[i];
    PADDLE_ENFORCE(static_cast<float *>(outputs.front().data.data())[i],
87 88 89 90
                   result[i]);
  }
}

91 92 93 94 95 96 97 98 99 100 101
namespace {

struct DataRecord {
  std::vector<std::vector<std::vector<float>>> link_step_data_all;
  std::vector<std::vector<float>> week_data_all, minute_data_all;
  std::vector<size_t> lod1, lod2, lod3;
  std::vector<std::vector<float>> rnn_link_data, rnn_week_datas,
      rnn_minute_datas;
  size_t batch_iter{0};
  size_t batch_size{1};
  DataRecord() = default;
102
  explicit DataRecord(const std::string &path, int batch_size = 1)
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
      : batch_size(batch_size) {
    Load(path);
  }
  DataRecord NextBatch() {
    DataRecord data;
    size_t batch_end = batch_iter + batch_size;
    // NOTE skip the final batch, if no enough data is provided.
    if (batch_end <= link_step_data_all.size()) {
      data.link_step_data_all.assign(link_step_data_all.begin() + batch_iter,
                                     link_step_data_all.begin() + batch_end);
      data.week_data_all.assign(week_data_all.begin() + batch_iter,
                                week_data_all.begin() + batch_end);
      data.minute_data_all.assign(minute_data_all.begin() + batch_iter,
                                  minute_data_all.begin() + batch_end);
      // Prepare LoDs
      data.lod1.push_back(0);
      data.lod2.push_back(0);
      data.lod3.push_back(0);
      CHECK(!data.link_step_data_all.empty()) << "empty";
      CHECK(!data.week_data_all.empty());
      CHECK(!data.minute_data_all.empty());
      CHECK_EQ(data.link_step_data_all.size(), data.week_data_all.size());
      CHECK_EQ(data.minute_data_all.size(), data.link_step_data_all.size());
      for (size_t j = 0; j < data.link_step_data_all.size(); j++) {
        for (const auto &d : data.link_step_data_all[j]) {
          data.rnn_link_data.push_back(d);
        }
        data.rnn_week_datas.push_back(data.week_data_all[j]);
        data.rnn_minute_datas.push_back(data.minute_data_all[j]);
        // calculate lod
        data.lod1.push_back(data.lod1.back() +
                            data.link_step_data_all[j].size());
        data.lod3.push_back(data.lod3.back() + 1);
        for (size_t i = 1; i < data.link_step_data_all[j].size() + 1; i++) {
          data.lod2.push_back(data.lod2.back() +
                              data.link_step_data_all[j].size());
        }
      }
    }
    batch_iter += batch_size;
    return data;
  }
  void Load(const std::string &path) {
    std::ifstream file(path);
    std::string line;
    int num_lines = 0;
    while (std::getline(file, line)) {
      num_lines++;
      std::vector<std::string> data;
      split(line, ':', &data);
      std::vector<std::vector<float>> link_step_data;
      std::vector<std::string> link_datas;
      split(data[0], '|', &link_datas);
      for (auto &step_data : link_datas) {
        std::vector<float> tmp;
        split_to_float(step_data, ',', &tmp);
        link_step_data.push_back(tmp);
      }
      // load week data
      std::vector<float> week_data;
      split_to_float(data[2], ',', &week_data);
      // load minute data
      std::vector<float> minute_data;
      split_to_float(data[1], ',', &minute_data);
      link_step_data_all.push_back(std::move(link_step_data));
      week_data_all.push_back(std::move(week_data));
      minute_data_all.push_back(std::move(minute_data));
    }
  }
};
void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
                   int batch_size) {
  PaddleTensor lod_attention_tensor, init_zero_tensor, lod_tensor_tensor,
      week_tensor, minute_tensor;
  lod_attention_tensor.name = "data_lod_attention";
  init_zero_tensor.name = "cell_init";
  lod_tensor_tensor.name = "data";
  week_tensor.name = "week";
  minute_tensor.name = "minute";
  auto one_batch = data->NextBatch();
183 184 185
  std::vector<int> rnn_link_data_shape(
      {static_cast<int>(one_batch.rnn_link_data.size()),
       static_cast<int>(one_batch.rnn_link_data.front().size())});
186 187 188 189 190 191
  lod_attention_tensor.shape.assign({1, 2});
  lod_attention_tensor.lod.assign({one_batch.lod1, one_batch.lod2});
  init_zero_tensor.shape.assign({batch_size, 15});
  init_zero_tensor.lod.assign({one_batch.lod3});
  lod_tensor_tensor.shape = rnn_link_data_shape;
  lod_tensor_tensor.lod.assign({one_batch.lod1});
192 193 194 195
  // clang-format off
  week_tensor.shape.assign(
      {static_cast<int>(one_batch.rnn_week_datas.size()),
       static_cast<int>(one_batch.rnn_week_datas.front().size())});
196
  week_tensor.lod.assign({one_batch.lod3});
197 198 199
  minute_tensor.shape.assign(
      {static_cast<int>(one_batch.rnn_minute_datas.size()),
       static_cast<int>(one_batch.rnn_minute_datas.front().size())});
200
  minute_tensor.lod.assign({one_batch.lod3});
201
  // clang-format on
202
  // assign data
L
luotao1 已提交
203 204
  TensorAssignData<float>(&lod_attention_tensor,
                          std::vector<std::vector<float>>({{0, 0}}));
205
  std::vector<float> tmp_zeros(batch_size * 15, 0.);
L
luotao1 已提交
206 207 208 209
  TensorAssignData<float>(&init_zero_tensor, {tmp_zeros});
  TensorAssignData<float>(&lod_tensor_tensor, one_batch.rnn_link_data);
  TensorAssignData<float>(&week_tensor, one_batch.rnn_week_datas);
  TensorAssignData<float>(&minute_tensor, one_batch.rnn_minute_datas);
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
  // Set inputs.
  auto init_zero_tensor1 = init_zero_tensor;
  init_zero_tensor1.name = "hidden_init";
  input_slots->assign({week_tensor, init_zero_tensor, minute_tensor,
                       init_zero_tensor1, lod_attention_tensor,
                       lod_tensor_tensor});
  for (auto &tensor : *input_slots) {
    tensor.dtype = PaddleDType::FLOAT32;
  }
}

}  // namespace

const float ditu_rnn_target_data[] = {
    104.711, 11.2431, 1.35422, 0,       0,       0,       0,       0,
    27.7039, 1.41486, 7.09526, 0,       0,       0,       0,       0,
    7.6481,  6.5324,  56.383,  2.88018, 8.92918, 132.007, 4.27429, 2.02934,
    14.1727, 10.7461, 25.0616, 16.0197, 14.4163, 16.9199, 6.75517, 0,
    80.0249, 4.77739, 0,       0,       0,       0,       0,       0,
    47.5643, 2.67029, 8.76252, 0,       0,       0,       0,       0,
    51.8822, 4.4411,  0,       0,       0,       0,       0,       0,
    10.7286, 12.0595, 10.6672, 0,       0,       0,       0,       0,
    93.5771, 3.84641, 0,       0,       0,       0,       0,       0,
    169.426, 0,       0,       0,       0,       0,       0,       0};
// Test with a really complicate model.
L
luotao1 已提交
235 236
void TestDituRNNPrediction(bool use_analysis_and_activate_ir = false,
                           int num_threads = FLAGS_num_threads) {
237
  NativeConfig config;
238 239
  config.prog_file = FLAGS_infer_ditu_rnn_model + "/__model__";
  config.param_file = FLAGS_infer_ditu_rnn_model + "/param";
240 241 242
  config.use_gpu = false;
  config.device = 0;
  config.specify_input_name = true;
L
luotao1 已提交
243 244
  int batch_size = FLAGS_batch_size;
  int num_times = FLAGS_repeat;
245

246
  auto base_predictor =
247
      CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
248 249
  auto predictor =
      CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kAnalysis>(config);
250
  std::vector<PaddleTensor> input_slots;
L
luotao1 已提交
251
  DataRecord data(FLAGS_infer_ditu_rnn_data, batch_size);
252 253
  // Prepare inputs.
  PrepareInputs(&input_slots, &data, batch_size);
254 255 256
  std::vector<PaddleTensor> outputs, base_outputs;

  base_predictor->Run(input_slots, &base_outputs);
257

258
  LOG(INFO) << "===========profile result===========";
L
luotao1 已提交
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
  if (num_threads == 1) {
    std::vector<PaddleTensor> input_slots;
    // Prepare inputs.
    DataRecord data(FLAGS_infer_ditu_rnn_data, batch_size);
    PrepareInputs(&input_slots, &data, batch_size);

    Timer timer;
    timer.tic();
    for (int i = 0; i < num_times; i++) {
      predictor->Run(input_slots, &outputs);
    }
    print_time(batch_size, num_times, 1, 0, timer.toc() / num_times);
  } else {
    std::vector<std::thread> threads;
    std::vector<PaddleTensor> input_slots;
    // Prepare inputs.
    PrepareInputs(&input_slots, &data, batch_size);
    std::vector<PaddleTensor> outputs;
    for (int tid = 0; tid < num_threads; ++tid) {
      threads.emplace_back([&, tid]() {
        auto predictor_tid =
            CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kAnalysis>(
                config);
        DataRecord data(FLAGS_infer_ditu_rnn_data, batch_size);

        Timer timer;
        timer.tic();
        for (int i = 0; i < num_times; i++) {
          predictor_tid->Run(input_slots, &outputs);
        }
        print_time(batch_size, num_times, num_threads, tid,
                   timer.toc() / num_times);
      });
    }
    for (int i = 0; i < num_threads; ++i) {
      threads[i].join();
    }
  }
297
  LOG(INFO) << "=====================================";
298

L
luotao1 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
  if (num_threads == 1) {
    PADDLE_ENFORCE_GT(outputs.size(), 0);
    PADDLE_ENFORCE_EQ(outputs.size(), base_outputs.size());
    for (size_t i = 0; i < outputs.size(); i++) {
      auto &out = outputs[i];
      auto &base_out = base_outputs[i];
      size_t size = std::accumulate(out.shape.begin(), out.shape.end(), 1,
                                    [](int a, int b) { return a * b; });
      size_t size1 =
          std::accumulate(base_out.shape.begin(), base_out.shape.end(), 1,
                          [](int a, int b) { return a * b; });
      PADDLE_ENFORCE_EQ(size, size1);
      PADDLE_ENFORCE_GT(size, 0);
      float *data = static_cast<float *>(out.data.data());
      float *base_data = static_cast<float *>(base_out.data.data());
      for (size_t i = 0; i < size; i++) {
        EXPECT_NEAR(data[i], base_data[i], 1e-3);
      }
317 318
    }
  }
Y
Yan Chunwei 已提交
319

L
luotao1 已提交
320
  if (use_analysis_and_activate_ir) {
Y
Yan Chunwei 已提交
321 322 323 324 325 326 327 328 329 330 331 332
    AnalysisPredictor *analysis_predictor =
        dynamic_cast<AnalysisPredictor *>(predictor.get());
    auto &fuse_statis = analysis_predictor->analysis_argument()
                            .Get<std::unordered_map<std::string, int>>(
                                framework::ir::kFuseStatisAttr);
    for (auto &item : fuse_statis) {
      LOG(INFO) << "fused " << item.first << " " << item.second;
    }

    ASSERT_TRUE(fuse_statis.count("fc"));
    EXPECT_EQ(fuse_statis.at("fc"), 1);
  }
333 334 335 336
}

// Directly infer with the original model.
TEST(Analyzer, DituRNN_without_analysis) {
L
luotao1 已提交
337 338 339
  LOG(INFO) << "ditu rnn without analysis";
  TestDituRNNPrediction(false, 1);
  TestDituRNNPrediction(false, 4);  // multi-threads
340 341 342 343 344
}

// Inference with analysis and IR. The IR module will fuse some large kernels.
TEST(Analyzer, DituRNN_with_analysis_with_IR) {
  LOG(INFO) << "ditu rnn with analysis and IR fuse";
L
luotao1 已提交
345 346
  TestDituRNNPrediction(true, 1);
  TestDituRNNPrediction(true, 4);  // multi-threads
347 348
}

349 350 351
}  // namespace analysis
}  // namespace inference
}  // namespace paddle
352 353

USE_PASS(fc_fuse_pass);
354 355
USE_PASS(seq_concat_fc_fuse_pass);
USE_PASS(fc_lstm_fuse_pass);
356 357
USE_PASS(graph_viz_pass);
USE_PASS(infer_clean_graph_pass);
358
USE_PASS(attention_lstm_fuse_pass);