test_imperative_triple_grad.py 11.2 KB
Newer Older
W
Weilong Wu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.fluid as fluid
import paddle
from paddle.fluid.wrapped_decorator import wrap_decorator
from paddle.vision.models import resnet50, resnet101
import unittest
from unittest import TestCase
import numpy as np
22
from paddle.fluid.framework import _test_eager_guard, _in_legacy_dygraph, _in_eager_without_dygraph_check
W
Weilong Wu 已提交
23 24 25 26


def _dygraph_guard_(func):
    def __impl__(*args, **kwargs):
J
Jiabin Yang 已提交
27
        if fluid._non_static_mode():
W
Weilong Wu 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
            return func(*args, **kwargs)
        else:
            with fluid.dygraph.guard():
                return func(*args, **kwargs)

    return __impl__


dygraph_guard = wrap_decorator(_dygraph_guard_)


def random_var(size, low=-1, high=1, dtype='float32'):
    np.random.seed(2021)
    x_np = np.random.uniform(low=low, high=high, size=size).astype(dtype)
    return fluid.dygraph.to_variable(x_np)


45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
class TestDygraphTripleGradMatmul(TestCase):
    def test_matmul_triple_grad(self):
        input_numpy = np.ones([3, 3]) * 2
        with _test_eager_guard():
            x = paddle.to_tensor(
                input_numpy, stop_gradient=False, dtype='float32')
            y = paddle.to_tensor(
                input_numpy, stop_gradient=False, dtype='float32')
            out = paddle.matmul(x, y, False, False)

            new_out_g = paddle.to_tensor(
                np.ones([3, 3]), stop_gradient=False, dtype='float32')
            new_x_g, new_y_g = paddle.grad(
                [out], [x, y], [new_out_g],
                retain_graph=True,
                create_graph=True)

            new_x_g_g = paddle.to_tensor(
                np.ones([3, 3]), stop_gradient=False, dtype='float32')
            new_y_g_g = paddle.to_tensor(
                np.ones([3, 3]), stop_gradient=False, dtype='float32')
            new_a, new_b, new_c = paddle.grad(
                [new_x_g, new_y_g], [x, y, new_out_g], [new_x_g_g, new_y_g_g],
                retain_graph=True,
                create_graph=True)

            new_a.backward()

            out_ref = np.ones([3, 3]) * 12.0
            self.assertTrue(np.array_equal(out.numpy(), out_ref))

            new_x_g_ref = np.ones([3, 3]) * 6.0
            new_y_g_ref = np.ones([3, 3]) * 6.0
            self.assertTrue(np.array_equal(new_x_g.numpy(), new_x_g_ref))
            self.assertTrue(np.array_equal(new_y_g.numpy(), new_y_g_ref))

            new_a_ref = np.ones([3, 3]) * 3.0
            new_b_ref = np.ones([3, 3]) * 3.0
            new_c_ref = np.ones([3, 3]) * 12.0

            self.assertTrue(np.array_equal(new_a.numpy(), new_a_ref))
            self.assertTrue(np.array_equal(new_b.numpy(), new_b_ref))
            self.assertTrue(np.array_equal(new_c.numpy(), new_c_ref))

            x_grad_ref = np.ones([3, 3]) * 0.0
            self.assertTrue(np.array_equal(x.grad.numpy(), x_grad_ref))

            y_grad_ref = np.ones([3, 3]) * 0.0
            self.assertTrue(np.array_equal(y.grad.numpy(), y_grad_ref))

            new_out_g_ref = np.ones([3, 3]) * 3.0
            self.assertTrue(
                np.array_equal(new_out_g.grad.numpy(), new_out_g_ref))

            new_x_g_g_ref = np.ones([3, 3]) * 0.0
            new_y_g_g_ref = np.ones([3, 3]) * 3.0
            self.assertTrue(
                np.array_equal(new_x_g_g.grad.numpy(), new_x_g_g_ref))
            self.assertTrue(
                np.array_equal(new_y_g_g.grad.numpy(), new_y_g_g_ref))


W
Weilong Wu 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
class TestDygraphTripleGrad(TestCase):
    def setUp(self):
        self.sort_sum_gradient = False
        self.shape = [5, 5]

    def grad(self,
             outputs,
             inputs,
             grad_outputs=None,
             no_grad_vars=None,
             retain_graph=None,
             create_graph=False,
             allow_unused=False):
        fluid.set_flags({'FLAGS_sort_sum_gradient': self.sort_sum_gradient})
        return fluid.dygraph.grad(
            outputs=outputs,
            inputs=inputs,
            grad_outputs=grad_outputs,
            no_grad_vars=no_grad_vars,
            retain_graph=retain_graph,
            create_graph=create_graph,
            allow_unused=allow_unused)

    @dygraph_guard
131
    def func_exception(self):
W
Weilong Wu 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
        with self.assertRaises(AssertionError):
            self.grad(None, None)

        shape = self.shape

        with self.assertRaises(AssertionError):
            self.grad(1, random_var(shape))

        with self.assertRaises(AssertionError):
            self.grad(random_var(shape), 1)

        with self.assertRaises(AssertionError):
            self.grad([1], [random_var(shape)])

        with self.assertRaises(AssertionError):
            self.grad([random_var(shape)], [1])

        with self.assertRaises(AssertionError):
            self.grad([random_var(shape), random_var(shape)],
                      [random_var(shape)], [random_var(shape)])

        with self.assertRaises(AssertionError):
            self.grad(
                [random_var(shape)], [random_var(shape)], no_grad_vars=[1])

        with self.assertRaises(AssertionError):
            self.grad([random_var(shape)], [random_var(shape)], no_grad_vars=1)

    @dygraph_guard
161
    def func_example_with_gradient_and_create_graph(self):
W
Weilong Wu 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
        x = random_var(self.shape)
        x_np = x.numpy()
        x.stop_gradient = False

        y = random_var(self.shape)
        y_np = y.numpy()
        y.stop_gradient = False

        z = random_var(self.shape)
        z_np = z.numpy()
        numel = z_np.size
        z.stop_gradient = False

        out = fluid.layers.sigmoid(paddle.matmul(x, y) + z)
        out_np = out.numpy()

        dx_actual, = self.grad([out], [x], create_graph=True)
        # Theoritical result based on math calculation
        dout = np.ones(self.shape).astype('float32')
        dx_expected = np.matmul(dout * out_np * (1 - out_np),
                                np.transpose(y_np))
        self.assertTrue(np.allclose(dx_actual.numpy(), dx_expected))

        ddx_actual, = self.grad([dx_actual], [x], create_graph=True)
        # Theoritical result based on math calculation
        DDY = np.zeros(self.shape).astype('float32')
        DDX = np.ones(self.shape).astype('float32')
        double_grad_tmp1 = np.matmul(dout * out_np * (1 - out_np),
                                     np.transpose(DDY))
        double_grad_tmp2 = np.matmul(DDX, y_np) + np.matmul(x_np, DDY)
        double_grad_tmp3 = (
            1 - 2 * out_np) * dout * double_grad_tmp2 * out_np * (1 - out_np)
        ddx_expected = double_grad_tmp1 + np.matmul(double_grad_tmp3,
                                                    np.transpose(y_np))
        self.assertTrue(np.allclose(ddx_actual.numpy(), ddx_expected))

        # Theoritical result based on math calculation
        d_ddout = np.zeros(self.shape).astype('float32')
        tmp0 = np.matmul(DDX, y_np) + np.matmul(x_np, DDY)
        tmp1 = (1 - 2 * out_np) * ((1 - 2 * out_np) * dout * tmp0 * tmp0)
        tmp2 = tmp0 * (1 - 2 * out_np) * d_ddout - 2 * dout * (
            1 - out_np) * out_np * tmp0 * tmp0
        dddx_expected = np.matmul(((tmp1 + tmp2) * out_np * (1 - out_np)),
                                  np.transpose(y_np))

        ddx_actual.backward()
        dddx_grad_actual = x.gradient()
        self.assertTrue(np.allclose(dddx_grad_actual, dddx_expected))

211
    def test_all_cases(self):
212 213 214
        self.func_exception()
        self.func_example_with_gradient_and_create_graph()
        with _test_eager_guard():
215 216 217
            self.func_exception()
            self.func_example_with_gradient_and_create_graph()

W
Weilong Wu 已提交
218

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
class TestDygraphTripleGradBradcastCase(TestCase):
    def setUp(self):
        self.sort_sum_gradient = False
        self.x_shape = [3, 2, 2]
        self.y_shape = [1, 2, 2]
        self.z_shape = [2, 2]

    def grad(self,
             outputs,
             inputs,
             grad_outputs=None,
             no_grad_vars=None,
             retain_graph=None,
             create_graph=False,
             allow_unused=False):
        fluid.set_flags({'FLAGS_sort_sum_gradient': self.sort_sum_gradient})
        return fluid.dygraph.grad(
            outputs=outputs,
            inputs=inputs,
            grad_outputs=grad_outputs,
            no_grad_vars=no_grad_vars,
            retain_graph=retain_graph,
            create_graph=create_graph,
            allow_unused=allow_unused)

    @dygraph_guard
245
    def func_example_with_gradient_and_create_graph(self):
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
        x = random_var(self.x_shape)
        x_np = x.numpy()
        x.stop_gradient = False

        y = random_var(self.y_shape)
        y_np = y.numpy()
        y.stop_gradient = False

        z = random_var(self.z_shape)
        z_np = z.numpy()
        numel = z_np.size
        z.stop_gradient = False

        out = fluid.layers.sigmoid(paddle.matmul(x, y) + z)
        out_np = out.numpy()

        dx_actual, = self.grad([out], [x], create_graph=True)
        # Theoritical result based on math calculation
        dout = np.ones(self.x_shape).astype('float32')
        dx_expected = np.matmul(
            dout * out_np * (1 - out_np), np.transpose(
                y_np, axes=(0, 2, 1)))
        self.assertTrue(np.allclose(dx_actual.numpy(), dx_expected))

        ddx_actual, = self.grad([dx_actual], [x], create_graph=True)
        # Theoritical result based on math calculation
        DDY = np.zeros(self.y_shape).astype('float32')
        DDX = np.ones(self.x_shape).astype('float32')
        double_grad_tmp1 = np.matmul(
            dout * out_np * (1 - out_np), np.transpose(
                DDY, axes=(0, 2, 1)))
        double_grad_tmp2 = np.matmul(DDX, y_np) + np.matmul(x_np, DDY)
        double_grad_tmp3 = (
            1 - 2 * out_np) * dout * double_grad_tmp2 * out_np * (1 - out_np)
        ddx_expected = double_grad_tmp1 + np.matmul(
            double_grad_tmp3, np.transpose(
                y_np, axes=(0, 2, 1)))
        self.assertTrue(np.allclose(ddx_actual.numpy(), ddx_expected))

        # Theoritical result based on math calculation
        d_ddout = np.zeros(self.x_shape).astype('float32')
        tmp0 = np.matmul(DDX, y_np) + np.matmul(x_np, DDY)
        tmp1 = (1 - 2 * out_np) * ((1 - 2 * out_np) * dout * tmp0 * tmp0)
        tmp2 = tmp0 * (1 - 2 * out_np) * d_ddout - 2 * dout * (
            1 - out_np) * out_np * tmp0 * tmp0
        dddx_expected = np.matmul(
            ((tmp1 + tmp2) * out_np * (1 - out_np)),
            np.transpose(
                y_np, axes=(0, 2, 1)))

        ddx_actual.backward()
        dddx_grad_actual = x.gradient()
        self.assertTrue(np.allclose(dddx_grad_actual, dddx_expected))

300
    def test_all_cases(self):
301 302
        self.func_example_with_gradient_and_create_graph()
        with _test_eager_guard():
303 304
            self.func_example_with_gradient_and_create_graph()

305

W
Weilong Wu 已提交
306 307
if __name__ == '__main__':
    unittest.main()