operator.cc 37.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14

15 16
#include <gflags/gflags.h>
#include <glog/logging.h>
17

18
#include <algorithm>
P
peizhilin 已提交
19 20 21 22 23
#include <sstream>
#include <string>
#include <vector>
#include "gflags/gflags.h"
#include "glog/logging.h"
Y
Yi Wang 已提交
24 25
#include "paddle/fluid/framework/data_transform.h"
#include "paddle/fluid/framework/executor.h"
26
#include "paddle/fluid/framework/lod_tensor.h"
27
#include "paddle/fluid/framework/op_proto_maker.h"
28
#include "paddle/fluid/framework/operator.h"
Y
Yi Wang 已提交
29
#include "paddle/fluid/framework/shape_inference.h"
30
#include "paddle/fluid/framework/transfer_scope_cache.h"
Y
Yi Wang 已提交
31
#include "paddle/fluid/framework/var_type.h"
32
#include "paddle/fluid/platform/profiler.h"
Q
Qiao Longfei 已提交
33

D
dzhwinter 已提交
34
DECLARE_bool(benchmark);
C
chengduoZH 已提交
35 36 37
DEFINE_bool(check_nan_inf, false,
            "Checking whether operator produce NAN/INF or not. It will be "
            "extremely slow so please use this flag wisely.");
Q
Qiao Longfei 已提交
38
DEFINE_int32(inner_op_parallelism, 0, "number of threads for inner op");
D
dzhwinter 已提交
39

Q
Qiao Longfei 已提交
40 41 42
namespace paddle {
namespace framework {

43 44 45 46 47 48
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
49

Q
qiaolongfei 已提交
50 51
proto::VarType::Type GetDataTypeOfVar(const Variable* var) {
  if (var->IsType<framework::LoDTensor>()) {
Y
Yu Yang 已提交
52
    return var->Get<framework::LoDTensor>().type();
Q
qiaolongfei 已提交
53
  } else if (var->IsType<framework::SelectedRows>()) {
Y
Yu Yang 已提交
54
    return var->Get<framework::SelectedRows>().value().type();
Q
qiaolongfei 已提交
55 56 57 58 59
  } else {
    PADDLE_THROW("Var should be LoDTensor or SelectedRows");
  }
}

60 61
static DDim GetDims(const Scope& scope, const std::string& name,
                    bool get_actual_dim = false) {
62
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
63 64
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
65 66
  }

M
minqiyang 已提交
67 68
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
M
minqiyang 已提交
69
    if (UNLIKELY(!tensor.IsInitialized())) {
70
      return DDim({-1});
71
    }
M
minqiyang 已提交
72 73 74 75 76 77 78
    return tensor.dims();
  } else if (var->IsType<SelectedRows>()) {
    if (get_actual_dim) {
      return var->Get<SelectedRows>().value().dims();
    } else {
      return var->Get<SelectedRows>().GetCompleteDims();
    }
79 80 81 82 83
  } else {
    return DDim({-1});
  }
}

Q
Qiao Longfei 已提交
84 85 86 87 88 89
static bool VarInited(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

D
dzhwinter 已提交
90 91 92 93 94
static std::string GetDtype(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
95

M
minqiyang 已提交
96 97 98
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
99 100
      return "";
    }
Y
Yu Yang 已提交
101
    return DataTypeToString(tensor.type());
M
minqiyang 已提交
102
  } else if (var->IsType<SelectedRows>()) {
Q
Qiao Longfei 已提交
103 104 105 106
    auto tensor = var->Get<SelectedRows>().value();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
Y
Yu Yang 已提交
107
      return DataTypeToString(tensor.type());
Q
Qiao Longfei 已提交
108
    }
D
dzhwinter 已提交
109 110 111 112 113
  } else {
    return "";
  }
}

114 115 116 117 118 119
static int GetRowSize(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

M
minqiyang 已提交
120 121
  if (var->IsType<SelectedRows>()) {
    return var->Get<SelectedRows>().rows().size();
122 123 124 125 126
  }

  return -1;
}

Q
Qiao Longfei 已提交
127 128 129 130 131 132 133 134
static LoD GetLoD(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
135 136 137
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
138 139
      return default_lod;
    }
M
minqiyang 已提交
140
    return tensor.lod();
Q
Qiao Longfei 已提交
141 142 143 144 145
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
146 147 148 149 150
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
151
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
152 153 154 155 156 157
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
158
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
159 160 161 162 163 164
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

165
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
166 167 168
  try {
    VLOG(4) << place << " " << DebugStringEx(&scope);
    if (platform::is_gpu_place(place)) {
169
#ifndef PADDLE_WITH_CUDA
P
peizhilin 已提交
170
      PADDLE_THROW("Cannot run operator on place %s", place);
171
#else
P
peizhilin 已提交
172 173
      auto dev_id = boost::get<platform::CUDAPlace>(place).device;
      platform::SetDeviceId(dev_id);
174
#endif
P
peizhilin 已提交
175
    }
P
peizhilin 已提交
176

P
peizhilin 已提交
177 178 179 180 181 182 183 184 185 186 187 188
    // The profile has a process-wide mutex, results in serious performance
    // issue
    // in concurrency scenerio. Here use an `if` to fix this issue.
    // Please not remove the `if`, ask @Superjomn if there are any concern.
    if (platform::IsProfileEnabled()) {
      platform::DeviceContextPool& pool =
          platform::DeviceContextPool::Instance();
      platform::RecordEvent record_event(Type(), pool.Get(place));
      RunImpl(scope, place);
    } else {
      RunImpl(scope, place);
    }
189

P
peizhilin 已提交
190 191 192 193 194
    VLOG(3) << place << " " << DebugStringEx(&scope);
  } catch (platform::EnforceNotMet exception) {
    if (Attrs().count("sub_block") != 0) {
      throw exception;
    }
195

P
peizhilin 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
    auto& callstack = Attr<std::vector<std::string>>(
        OpProtoAndCheckerMaker::OpCreationCallstackAttrName());

    if (callstack.empty()) {
      throw exception;
    }
    std::ostringstream sout;
    sout << "Invoke operator " << Type() << " error.\n";
    sout << "Python Callstacks: \n";
    for (auto& line : callstack) {
      sout << line;
    }
    sout << "C++ Callstacks: \n";
    sout << exception.err_str_;
    exception.err_str_ = sout.str();
    throw exception;
  } catch (...) {
    std::rethrow_exception(std::current_exception());
  }
215 216
}

217
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
218
  return inputs_.find(name) != inputs_.end();
219 220
}

221
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
222
  auto& ins = Inputs(name);
Y
Yu Yang 已提交
223
  PADDLE_ENFORCE_LE(ins.size(), 1UL,
224 225
                    "Operator %s's input %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
226
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
227 228
}

Y
Yu Yang 已提交
229 230
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
231
  auto it = inputs_.find(name);
232 233
  PADDLE_ENFORCE(it != inputs_.end(), "Operator %s does not have the input %s.",
                 type_, name);
Y
Yu Yang 已提交
234
  return it->second;
Y
Yan Chunwei 已提交
235 236
}

237
bool OperatorBase::HasOutputs(const std::string& name) const {
238
  if (outputs_.find(name) != outputs_.end()) {
239 240 241 242 243 244
    return true;
  } else {
    return false;
  }
}

245
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
246
  auto& outs = Outputs(name);
Y
Yu Yang 已提交
247
  PADDLE_ENFORCE_LE(outs.size(), 1UL,
248 249
                    "Operator %s's output %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
250
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
251 252
}

Y
Yu Yang 已提交
253 254
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
255
  auto it = outputs_.find(name);
256 257
  PADDLE_ENFORCE(it != outputs_.end(),
                 "Operator %s does not have an output called %s.", type_, name);
Y
Yu Yang 已提交
258
  return it->second;
Y
Yan Chunwei 已提交
259 260
}

261
std::string OperatorBase::DebugStringEx(const Scope* scope) const {
Q
Qiao Longfei 已提交
262
  std::stringstream ss;
Y
Yu Yang 已提交
263
  ss << "Op(" << type_ << "), inputs:{";
Y
Yu Yang 已提交
264 265
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
Y
Yu Yang 已提交
266 267
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
268 269
      auto var_name = input.second[i];
      ss << var_name;
270
      if (scope) {
Q
Qiao Longfei 已提交
271 272 273 274 275 276 277 278 279 280 281
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
          std::string dtype = GetDtype(*scope, var_name);
          ss << ":" << dtype;
          ss << "[" << GetDims(*scope, var_name, true) << "]";
          ss << "(" << GetLoD(*scope, var_name) << ")";
282
        }
283
      }
Y
Yu Yang 已提交
284 285 286
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
287
    }
Y
Yu Yang 已提交
288
    ss << "]";
Y
Yu Yang 已提交
289 290
    ++it;
    if (it != inputs_.end()) {
291 292
      ss << ", ";
    }
Q
Qiao Longfei 已提交
293
  }
Y
Yu Yang 已提交
294
  ss << "}, outputs:{";
Y
Yu Yang 已提交
295 296
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
297 298
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
299 300
      auto var_name = output.second[i];
      ss << var_name;
301
      if (scope) {
Q
Qiao Longfei 已提交
302 303 304 305 306 307 308
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
309 310
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
Q
Qiao Longfei 已提交
311 312
          ss << "[" << GetDims(*scope, var_name, true) << "]";
          ss << "(" << GetLoD(*scope, var_name) << ")";
313
        }
314
      }
Y
Yu Yang 已提交
315 316 317
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
318
    }
Y
Yu Yang 已提交
319
    ss << "]";
Y
Yu Yang 已提交
320 321
    ++it;
    if (it != outputs_.end()) {
322 323
      ss << ", ";
    }
Q
Qiao Longfei 已提交
324
  }
Y
Yu Yang 已提交
325
  ss << "}.";
Q
Qiao Longfei 已提交
326 327 328
  return ss.str();
}

Y
Yu Yang 已提交
329
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
330 331
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
332 333
                           const AttributeMap& attrs)
    : type_(type), inputs_(inputs), outputs_(outputs), attrs_(attrs) {
334 335
  GenerateTemporaryNames();
  CheckAllInputOutputSet();
Y
Yu Yang 已提交
336
}
337

Q
qijun 已提交
338 339
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
340
  for (auto& o : inputs_) {
Q
qijun 已提交
341 342 343 344 345 346
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
347 348 349 350 351 352 353 354 355 356
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
Y
Yu Yang 已提交
357
  auto& info = OpInfoMap::Instance().Get(Type());
Y
Yu Yang 已提交
358 359

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
360
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
361 362 363 364 365 366 367 368 369
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
370 371
}

372 373 374
void OperatorBase::CheckAllInputOutputSet() const {
  auto& info_map = OpInfoMap::Instance();
  auto* op_info = info_map.GetNullable(Type());
Y
Yu Yang 已提交
375
  if (op_info == nullptr || op_info->proto_ == nullptr) return;
376 377

  for (auto& in : op_info->Proto().inputs()) {
378 379 380 381
    if (!in.dispensable()) {
      PADDLE_ENFORCE(inputs_.find(in.name()) != inputs_.end(),
                     "Operator %s's input, %s, is not set", Type(), in.name());
    }
382 383 384
  }

  for (auto& out : op_info->Proto().outputs()) {
385 386 387 388 389
    if (!out.dispensable()) {
      PADDLE_ENFORCE(outputs_.find(out.name()) != outputs_.end(),
                     "Operator %s's output, %s, is not set", Type(),
                     out.name());
    }
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}

B
baojun-nervana 已提交
406
static bool VarIsTensor(const Variable& var) {
C
chengduo 已提交
407
  return var.IsType<LoDTensor>() || var.IsType<SelectedRows>();
408 409
}

C
chengduo 已提交
410
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var) {
C
chengduo 已提交
411 412 413 414
  if (var.IsType<LoDTensor>()) {
    return static_cast<const Tensor*>(&(var.Get<LoDTensor>()));
  } else if (var.IsType<SelectedRows>()) {
    return &(var.Get<SelectedRows>().value());
Q
QI JUN 已提交
415
  } else {
Y
Yang Yang 已提交
416
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
S
sneaxiy 已提交
417
                 ToTypeName(var.Type()));
Q
QI JUN 已提交
418 419 420
  }
}

C
chengduo 已提交
421
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
Q
QI JUN 已提交
422
  if (var->IsType<LoDTensor>()) {
423
    return var->GetMutable<LoDTensor>();
Q
QI JUN 已提交
424
  } else if (var->IsType<SelectedRows>()) {
425
    return var->GetMutable<SelectedRows>()->mutable_value();
Q
QI JUN 已提交
426
  } else {
Y
Yang Yang 已提交
427
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
S
sneaxiy 已提交
428
                 ToTypeName(var->Type()));
Q
QI JUN 已提交
429 430 431
  }
}

432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
bool ExecutionContext::HasInput(const std::string& name) const {
  if (!op_.HasInputs(name)) {
    return false;
  }
  auto& ins = Inputs(name);
  size_t length = ins.size();
  if (length == 0) {
    return false;
  }
  PADDLE_ENFORCE_EQ(length, 1UL,
                    "Input %s should not have more than one inputs", name);
  auto arg = ins[0];
  auto* var = arg == kEmptyVarName ? nullptr : scope_.FindVar(arg);
  return var != nullptr;
}

bool ExecutionContext::HasOutput(const std::string& name) const {
  if (!op_.HasOutputs(name)) {
    return false;
  }
  auto& outs = Outputs(name);
  size_t length = outs.size();
  if (length == 0) {
    return false;
  }
  PADDLE_ENFORCE_EQ(length, 1UL,
                    "Output %s should not have more than one inputs", name);
  auto arg = outs[0];
  auto* var = arg == kEmptyVarName ? nullptr : scope_.FindVar(arg);
  return var != nullptr;
}

X
Xin Pan 已提交
464 465 466 467 468 469 470 471 472 473
const Variable* ExecutionContext::InputVar(const std::string& name) const {
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

  PADDLE_ENFORCE_LE(it->second.size(), 1UL,
                    "Operator %s's input %s should contain only one variable.",
                    op_.Type(), name);
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
474 475 476 477
const Variable* ExecutionContext::LegacyInputVar(
    const std::string& name) const {
  auto ipt = op_.Input(name);
  return ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
X
Xin Pan 已提交
478 479
}

X
clean  
Xin Pan 已提交
480
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
481 482 483 484 485 486 487 488 489
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

  PADDLE_ENFORCE_LE(it->second.size(), 1UL,
                    "Operator %s's output %s should contain only one variable.",
                    op_.Type(), name);
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
490 491 492 493 494
Variable* ExecutionContext::LegacyOutputVar(const std::string& name) const {
  auto opt = op_.Output(name);
  return opt == kEmptyVarName ? nullptr : scope_.FindVar(opt);
}

495
template <>
496
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const {
C
chengduo 已提交
497
  return Input<LoDTensor>(name);
498 499
}

X
Xin Pan 已提交
500
template <>
X
clean  
Xin Pan 已提交
501
const Tensor* ExecutionContext::LegacyInput<Tensor>(
X
Xin Pan 已提交
502
    const std::string& name) const {
X
clean  
Xin Pan 已提交
503
  return LegacyInput<LoDTensor>(name);
X
Xin Pan 已提交
504 505
}

506
template <>
507
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
508
    const std::string& name) const {
X
Xin Pan 已提交
509 510 511 512 513 514 515 516 517 518 519 520 521
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) {
    return {};
  }
  const std::vector<Variable*>& vars = it->second;
  std::vector<const Tensor*> res;
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                 [&](Variable* var) -> const Tensor* {
                   if (var == nullptr) return nullptr;
                   PADDLE_ENFORCE(
                       var->IsType<LoDTensor>(),
                       "should be LoDTensor, but the received type is %s",
S
sneaxiy 已提交
522
                       ToTypeName(var->Type()));
X
Xin Pan 已提交
523 524 525 526 527 528 529 530
                   return &(var->Get<LoDTensor>());
                 });
  return res;
}

template <>
const std::vector<const Tensor*> ExecutionContext::LegacyMultiInput<Tensor>(
    const std::string& name) const {
531 532 533
  auto names = op().Inputs(name);
  std::vector<const Tensor*> res;
  res.reserve(names.size());
534
  std::transform(names.begin(), names.end(), std::back_inserter(res),
C
chengduo 已提交
535
                 [&](const std::string& sub_name) -> const Tensor* {
536
                   auto var = scope_.FindVar(sub_name);
C
chengduo 已提交
537 538 539 540
                   if (var == nullptr) return nullptr;
                   PADDLE_ENFORCE(
                       var->IsType<LoDTensor>(),
                       "%s should be LoDTensor, but the received type is %s",
S
sneaxiy 已提交
541
                       sub_name, ToTypeName(var->Type()));
C
chengduo 已提交
542
                   return &(var->Get<LoDTensor>());
543
                 });
544 545 546 547
  return res;
}

template <>
548
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const {
C
chengduo 已提交
549
  return Output<LoDTensor>(name);
550 551
}

X
Xin Pan 已提交
552
template <>
X
clean  
Xin Pan 已提交
553 554
Tensor* ExecutionContext::LegacyOutput<Tensor>(const std::string& name) const {
  return LegacyOutput<LoDTensor>(name);
X
Xin Pan 已提交
555 556
}

557
template <>
558
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
559 560 561 562
    const std::string& name) const {
  auto names = op().Outputs(name);
  std::vector<Tensor*> res;
  res.reserve(names.size());
563
  std::transform(names.begin(), names.end(), std::back_inserter(res),
C
chengduo 已提交
564
                 [&](const std::string& sub_name) -> Tensor* {
565
                   auto var = scope_.FindVar(sub_name);
C
chengduo 已提交
566 567 568 569
                   if (var == nullptr) return nullptr;
                   PADDLE_ENFORCE(
                       var->IsType<LoDTensor>(),
                       "%s should be LoDTensor, but the received type is %s",
S
sneaxiy 已提交
570
                       sub_name, ToTypeName(var->Type()));
C
chengduo 已提交
571
                   return var->GetMutable<LoDTensor>();
572
                 });
573 574 575
  return res;
}

Y
Yu Yang 已提交
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
bool OpSupportGPU(const std::string& op_type) {
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
  if (it == all_kernels.end()) {
    // All control operator must support GPU
    return true;
  }
  for (auto& kern_pair : it->second) {
    if (platform::is_gpu_place(kern_pair.first.place_)) {
      return true;
    }
  }
  return false;
}

591 592
class RuntimeInferShapeContext : public InferShapeContext {
 public:
X
Xin Pan 已提交
593 594 595
  RuntimeInferShapeContext(const OperatorBase& op, const Scope& scope,
                           const RuntimeContext& ctx)
      : op_(op), scope_(scope), ctx_(ctx) {}
596 597

  bool HasInput(const std::string& name) const override {
598
    // has only one input
X
Xin Pan 已提交
599
    const auto& ins = ctx_.inputs;
600 601
    auto it = ins.find(name);
    if (it == ins.end()) {
602 603
      return false;
    }
604
    const auto& in = it->second;
X
Xin Pan 已提交
605
    if (in.size() == 0) return false;
T
tensor-tang 已提交
606
    PADDLE_ENFORCE_EQ(in.size(), 1UL,
F
fengjiayi 已提交
607
                      "Input %s should not have more than one inputs", name);
X
Xin Pan 已提交
608
    return in[0] != nullptr;
609 610 611
  }

  bool HasOutput(const std::string& name) const override {
612
    // has only one output
X
Xin Pan 已提交
613
    const auto& outs = ctx_.outputs;
614 615
    auto it = outs.find(name);
    if (it == outs.end()) {
616 617
      return false;
    }
618
    const auto& out = it->second;
X
Xin Pan 已提交
619
    if (out.size() == 0) {
620 621
      return false;
    }
T
tensor-tang 已提交
622 623
    PADDLE_ENFORCE_EQ(out.size(), 1UL,
                      "Output %s should not have more than one outputs", name);
X
Xin Pan 已提交
624
    return out[0] != nullptr;
625 626 627
  }

  bool HasInputs(const std::string& name) const override {
X
Xin Pan 已提交
628 629
    const auto& ins = ctx_.inputs;
    auto it = ins.find(name);
X
fix  
Xin Pan 已提交
630
    if (it == ins.end() || it->second.empty()) {
631 632
      return false;
    }
X
Xin Pan 已提交
633 634
    for (auto& input : it->second) {
      if (input == nullptr) {
635 636 637 638 639 640 641
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
X
Xin Pan 已提交
642 643
    const auto& outs = ctx_.outputs;
    auto it = outs.find(name);
X
fix  
Xin Pan 已提交
644
    if (it == outs.end() || it->second.empty()) {
645 646
      return false;
    }
X
Xin Pan 已提交
647 648
    for (auto& output : it->second) {
      if (output == nullptr) {
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
        return false;
      }
    }
    return true;
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

  const std::vector<std::string>& Inputs(
      const std::string& name) const override {
    return op_.Inputs(name);
  }

  const std::vector<std::string>& Outputs(
      const std::string& name) const override {
    return op_.Outputs(name);
  }

667 668
  void ShareDim(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) override {
X
Xin Pan 已提交
669 670 671 672 673 674 675 676 677
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE(in_it != ctx_.inputs.end() && in_it->second.size() > i,
                   "Inputs %s should have %llu argument", in, i);
    PADDLE_ENFORCE(out_it != ctx_.outputs.end() && out_it->second.size() > j,
                   "Outputs %s should have %llu argument", out, j);

    Variable* in_var = in_it->second[i];
    Variable* out_var = out_it->second[j];
678 679

    PADDLE_ENFORCE(in_var->Type() == out_var->Type(),
X
fix  
Xin Pan 已提交
680
                   "The type of %s and %s is not the same.", in, out);
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698

    if (in_var->IsType<framework::SelectedRows>()) {
      auto& in_sele_rows = in_var->Get<framework::SelectedRows>();
      auto out_sele_rows = out_var->GetMutable<framework::SelectedRows>();
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
    } else if (in_var->IsType<framework::LoDTensor>()) {
      auto& in_lod_tensor = in_var->Get<framework::LoDTensor>();
      auto* out_lod_tensor = out_var->GetMutable<framework::LoDTensor>();
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
      PADDLE_THROW(
          "Currently, the input type of ShareDim only can be LoDTensor "
          "or SelectedRows.");
    }
  }

Q
Qiao Longfei 已提交
699 700
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
X
Xin Pan 已提交
701 702 703 704 705 706 707 708
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE(in_it != ctx_.inputs.end() && in_it->second.size() > i,
                   "Inputs %s should have %llu argument", in, i);
    PADDLE_ENFORCE(out_it != ctx_.outputs.end() && out_it->second.size() > j,
                   "Outputs %s should have %llu argument", out, j);

    Variable* in_var = in_it->second.at(i);
Q
Qiao Longfei 已提交
709
    if (!in_var->IsType<LoDTensor>()) return;
X
Xin Pan 已提交
710
    Variable* out_var = out_it->second.at(j);
Q
Qiao Longfei 已提交
711 712 713 714 715
    PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
                   "The %d-th output of Output(%s) must be LoDTensor.", j, out);
    auto in_tensor = in_var->Get<LoDTensor>();
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
716

M
mozga-intel 已提交
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
736 737
  }

C
chengduo 已提交
738 739 740 741 742
  void DecreaseLoDLevel(const std::string& in, const std::string& out,
                        size_t i = 0, size_t j = 0) const override {
    PADDLE_THROW("DecreaseLoDLevel is only used in compile time.");
  }

743 744
  bool IsRuntime() const override { return true; }

745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
  // TODO(paddle-dev): Can this be template?
  std::vector<InferShapeVarPtr> GetInputVarPtrs(
      const std::string& name) override {
    const std::vector<Variable*>& vars = InputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

  std::vector<InferShapeVarPtr> GetOutputVarPtrs(
      const std::string& name) override {
    const std::vector<Variable*>& vars = OutputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

X
Xin Pan 已提交
764 765 766 767 768 769 770 771 772 773 774 775 776
  DDim GetInputDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    PADDLE_ENFORCE_EQ(vars.size(), 1UL,
                      "Input(%s) should hold one element, but now it holds %d",
                      name, vars.size());
    return this->GetDim(vars[0]);
  }

  std::vector<DDim> GetInputsDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    return GetDims(vars);
  }

X
Xin Pan 已提交
777 778 779 780 781 782 783 784 785 786
  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string& name) const override {
    return GetVarTypes(InputVars(name));
  }

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string& name) const override {
    return GetVarTypes(OutputVars(name));
  }

X
Xin Pan 已提交
787 788 789 790 791 792 793 794 795 796 797 798 799 800
  void SetOutputDim(const std::string& name, const DDim& dim) override {
    auto& vars = OutputVars(name);
    PADDLE_ENFORCE_EQ(vars.size(), 1UL,
                      "Output(%s) should hold one element, but now it holds %d",
                      name, vars.size());
    SetDim(vars[0], dim);
  }

  void SetOutputsDim(const std::string& name,
                     const std::vector<DDim>& dims) override {
    auto& vars = OutputVars(name);
    SetDims(vars, dims);
  }

801
 protected:
X
Xin Pan 已提交
802
  DDim GetDim(Variable* var) const {
F
fengjiayi 已提交
803
    PADDLE_ENFORCE_NOT_NULL(var);
804 805 806 807 808
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
    } else if (var->IsType<SelectedRows>()) {
      return var->Get<SelectedRows>().GetCompleteDims();
    } else {
F
fengjiayi 已提交
809
      PADDLE_THROW(
X
Xin Pan 已提交
810
          "Only LoDTensor/SelectedRows support 'GetDim', but Variables "
F
fengjiayi 已提交
811
          "type_id is %s.",
S
sneaxiy 已提交
812
          ToTypeName(var->Type()));
F
fengjiayi 已提交
813 814 815
    }
  }

X
Xin Pan 已提交
816 817 818 819 820 821 822 823
  std::vector<DDim> GetDims(const std::vector<Variable*>& vars) const {
    std::vector<DDim> ret;
    ret.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(ret),
                   [this](Variable* var) { return this->GetDim(var); });
    return ret;
  }

F
fengjiayi 已提交
824
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
Y
Yu Yang 已提交
825
    PADDLE_THROW("Only compile time support this method");
826 827
  }

X
Xin Pan 已提交
828
  void SetDim(Variable* var, const DDim& dim) {
829 830 831 832 833
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
    } else if (var->IsType<SelectedRows>()) {
      var->GetMutable<SelectedRows>()->set_height(dim[0]);
    } else {
X
Xin Pan 已提交
834
      PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
S
sneaxiy 已提交
835
                   ToTypeName(var->Type()));
X
Xin Pan 已提交
836 837 838 839 840 841 842 843 844 845 846 847
    }
  }

  void SetDims(const std::vector<Variable*>& vars,
               const std::vector<DDim>& dims) {
    size_t length = vars.size();
    PADDLE_ENFORCE_EQ(length, dims.size());
    for (size_t i = 0; i < length; ++i) {
      if (vars[i] == nullptr) {
        continue;
      }
      SetDim(vars[i], dims[i]);
848 849 850
    }
  }

F
fengjiayi 已提交
851 852
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
Y
Yu Yang 已提交
853
    PADDLE_THROW("Only compile time support this method");
F
fengjiayi 已提交
854 855
  }

X
Xin Pan 已提交
856 857 858 859 860 861 862 863 864 865 866
  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<Variable*>& vars) const {
    std::vector<proto::VarType::Type> retv;
    retv.resize(vars.size());
    std::transform(vars.begin(), vars.end(), retv.begin(),
                   std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
                             this, std::placeholders::_1));
    return retv;
  }

  proto::VarType::Type GetVarType(Variable* var) const {
867 868 869
    return ToVarType(var->Type());
  }

870 871 872 873 874 875 876 877 878 879 880 881 882 883
 private:
  const std::vector<Variable*>& InputVars(const std::string& name) const {
    auto it = ctx_.inputs.find(name);
    PADDLE_ENFORCE(it != ctx_.inputs.end(),
                   "Operator %s does not have the input %s.", op_.Type(), name);
    return it->second;
  }

  const std::vector<Variable*>& OutputVars(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
    PADDLE_ENFORCE(it != ctx_.outputs.end(),
                   "Operator %s does not have the outputs %s.", op_.Type(),
                   name);
    return it->second;
F
fengjiayi 已提交
884 885
  }

886 887
  const OperatorBase& op_;
  const Scope& scope_;
X
Xin Pan 已提交
888
  const RuntimeContext& ctx_;
889 890
};

C
chengduoZH 已提交
891 892 893 894 895
static void CheckTensorNANOrInf(const std::string& name,
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
Y
Yu Yang 已提交
896 897
  if (tensor.type() != proto::VarType::FP32 &&
      tensor.type() != proto::VarType::FP64) {
C
chengduoZH 已提交
898 899 900 901 902 903 904 905
    return;
  }
  PADDLE_ENFORCE(!framework::TensorContainsInf(tensor),
                 "Tensor %s contains Inf", name);
  PADDLE_ENFORCE(!framework::TensorContainsNAN(tensor),
                 "Tensor %s contains NAN", name);
}

B
baojun-nervana 已提交
906
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
907 908 909
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
  RuntimeInferShapeContext infer_shape_ctx(*this, scope, ctx);
B
baojun-nervana 已提交
910 911 912
  this->InferShape(&infer_shape_ctx);
}

913 914
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
X
Xin Pan 已提交
915
  RuntimeContext ctx(Inputs(), Outputs(), scope);
Y
Yu Yang 已提交
916
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
917
  auto* dev_ctx = pool.Get(place);
918

919 920 921 922
  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  if (kernels_iter == all_op_kernels.end()) {
Y
Yu Yang 已提交
923 924
    PADDLE_THROW(
        "There are no kernels which are registered in the %s operator.", type_);
925 926
  }

Q
qiaolongfei 已提交
927 928
  OpKernelMap& kernels = kernels_iter->second;

X
Xin Pan 已提交
929 930
  auto expected_kernel_key = this->GetExpectedKernelType(
      ExecutionContext(*this, scope, *dev_ctx, ctx));
M
minqiyang 已提交
931
  VLOG(3) << "expected_kernel_key:" << expected_kernel_key;
Q
qiaolongfei 已提交
932

933
  auto kernel_iter = kernels.find(expected_kernel_key);
934
#ifdef PADDLE_WITH_MKLDNN
P
Paweł Żelazko 已提交
935
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
936 937
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
M
minqiyang 已提交
938
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
939 940 941 942 943
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
944 945 946 947 948
  if (kernel_iter == kernels.end()) {
    PADDLE_THROW("op %s does not have kernel for %s", type_,
                 KernelTypeToString(expected_kernel_key));
  }

Y
yuyang18 已提交
949 950 951
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
  auto* transfer_scope =
X
Xin Pan 已提交
952
      PrepareData(scope, expected_kernel_key, &transfered_inplace_vars, &ctx);
953

Y
yuyang18 已提交
954 955 956 957 958 959
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

  if (!(expected_kernel_key.place_ == dev_ctx->GetPlace())) {
    dev_ctx = pool.Get(expected_kernel_key.place_);
960
  }
Q
QI JUN 已提交
961

X
Xin Pan 已提交
962
  RuntimeInferShapeContext infer_shape_ctx(*this, exec_scope, ctx);
X
Xin Pan 已提交
963
  this->InferShape(&infer_shape_ctx);
X
clean  
Xin Pan 已提交
964 965
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
X
Xin Pan 已提交
966
  kernel_iter->second(ExecutionContext(*this, exec_scope, *dev_ctx, ctx));
D
dzhwinter 已提交
967

Y
yuyang18 已提交
968 969 970
  if (!transfered_inplace_vars.empty()) {
    // there is inplace variable has been transfered.
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
971 972
  }

D
dzhwinter 已提交
973
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
974
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
975
    dev_ctx->Wait();
D
dzhwinter 已提交
976
  }
C
chengduoZH 已提交
977 978 979

  if (FLAGS_check_nan_inf) {
    for (auto& vname : OutputVars(true)) {
Y
yuyang18 已提交
980
      auto* var = exec_scope.FindVar(vname);
C
chengduoZH 已提交
981 982 983
      if (var == nullptr) continue;
      if (var->IsType<framework::LoDTensor>()) {
        CheckTensorNANOrInf(vname, var->Get<framework::LoDTensor>());
984 985
      } else if (var->IsType<framework::SelectedRows>()) {
        CheckTensorNANOrInf(vname, var->Get<framework::SelectedRows>().value());
C
chengduoZH 已提交
986 987 988
      }
    }
  }
Q
Qiao Longfei 已提交
989
}
X
Xin Pan 已提交
990

Y
yuyang18 已提交
991 992 993 994
void OperatorWithKernel::TransferInplaceVarsBack(
    const Scope& scope, const std::vector<std::string>& inplace_vars,
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
995
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
996 997
    auto* original_tensor =
        GetMutableLoDTensorOrSelectedRowsValueFromVar(scope.FindVar(var_name));
C
chengduo 已提交
998 999 1000
    auto* var = transfer_scope.FindVar(var_name);
    PADDLE_ENFORCE(var != nullptr, "The var[%s] should not be nullptr",
                   var_name);
C
chengduo 已提交
1001
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
Y
yuyang18 已提交
1002 1003 1004 1005
    original_tensor->ShareDataWith(*transformed_tensor);
  }
}

X
Xin Pan 已提交
1006
Scope* OperatorWithKernel::PrepareData(
Y
yuyang18 已提交
1007
    const Scope& scope, const OpKernelType& expected_kernel_key,
X
Xin Pan 已提交
1008 1009
    std::vector<std::string>* transfered_inplace_vars,
    RuntimeContext* ctx) const {
Y
yuyang18 已提交
1010 1011
  Scope* new_scope = nullptr;
  for (auto& var_name_item : Inputs()) {
X
Xin Pan 已提交
1012 1013 1014 1015
    std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];

    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      auto& var_name = var_name_item.second[i];
X
Xin Pan 已提交
1016
      auto* var = input_vars[i];
X
Xin Pan 已提交
1017

Y
yuyang18 已提交
1018
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
1019
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
1020 1021 1022
        continue;
      }

C
chengduo 已提交
1023
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
Y
yuyang18 已提交
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
      if (!tensor_in->IsInitialized()) {
        continue;
      }

      auto kernel_type_for_var = GetKernelTypeForVar(
          var_name_item.first, *tensor_in, expected_kernel_key);

      if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
        continue;
      }

      auto out_var_names = OutputVars(true);
      if (std::find(out_var_names.begin(), out_var_names.end(), var_name) !=
          out_var_names.end()) {
        transfered_inplace_vars->emplace_back(var_name);
      }

M
minqiyang 已提交
1041 1042
      VLOG(3) << "Transform Variable " << var_name << " from "
              << kernel_type_for_var << " to " << expected_kernel_key;
Y
yuyang18 已提交
1043

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
      // In the inference scenerio, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memroy explosion
      // over the  running of operators.
      // We use a thread_local cache to fix that issue, the key in the cache is
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
      // variables, that behavior a lot different.
      if (!run_by_executor_) {
        new_scope = TryCreateTransferScope(kernel_type_for_var,
                                           expected_kernel_key, &scope);
1059
      }
1060
      if (!new_scope) {
Y
yuyang18 已提交
1061 1062 1063 1064
        new_scope = &scope.NewScope();
      }

      auto* trans_var = new_scope->Var(var_name);
X
fix  
Xin Pan 已提交
1065
      input_vars[i] = trans_var;
1066

Y
yuyang18 已提交
1067
      Tensor out;
Y
yuyang18 已提交
1068
      TransformData(expected_kernel_key, kernel_type_for_var, *tensor_in, &out);
Y
yuyang18 已提交
1069 1070 1071 1072 1073 1074
      SetTensorToVariable(*var, out, trans_var);
    }
  }

  return new_scope;
}
Q
Qiao Longfei 已提交
1075

1076
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
1077 1078 1079
    const ExecutionContext& ctx) const {
  int data_type = -1;
  for (auto& input : this->inputs_) {
X
Xin Pan 已提交
1080 1081 1082
    const std::vector<const Variable*> vars = ctx.MultiInputVar(input.first);
    for (size_t i = 0; i < vars.size(); ++i) {
      const Variable* var = vars[i];
Y
Yu Yang 已提交
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
      if (var != nullptr) {
        const Tensor* t = nullptr;
        if (var->IsType<Tensor>()) {
          t = &var->Get<Tensor>();
        } else if (var->IsType<LoDTensor>()) {
          t = &var->Get<LoDTensor>();
        } else if (var->IsType<SelectedRows>()) {
          t = &(var->Get<SelectedRows>().value());
        }
        if (t != nullptr) {
X
Xin Pan 已提交
1093 1094
          PADDLE_ENFORCE(t->IsInitialized(), "Input %s(%lu)is not initialized",
                         input.first, i);
Y
Yu Yang 已提交
1095
          int tmp = static_cast<int>(t->type());
1096 1097
          PADDLE_ENFORCE(
              tmp == data_type || data_type == -1,
X
Xin Pan 已提交
1098 1099
              "DataType of Paddle Op %s must be the same. Get (%d) != (%d)",
              Type(), data_type, tmp);
Y
Yu Yang 已提交
1100 1101 1102 1103 1104 1105
          data_type = tmp;
        }
      }
    }
  }
  PADDLE_ENFORCE(data_type != -1, "DataType should be indicated by input");
1106
  return static_cast<proto::VarType::Type>(data_type);
Y
Yu Yang 已提交
1107
}
1108

1109 1110 1111 1112 1113 1114 1115 1116
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
M
mozga-intel 已提交
1117 1118
  return OpKernelType(expected_kernel_type.data_type_, tensor.place(),
                      tensor.layout());
1119 1120
}

Q
Qiao Longfei 已提交
1121
}  // namespace framework
L
liaogang 已提交
1122
}  // namespace paddle