operator.h 13.8 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
18
#include <atomic>
Q
Qiao Longfei 已提交
19
#include <string>
D
dzhwinter 已提交
20
#include <tuple>
Q
Qiao Longfei 已提交
21 22 23
#include <unordered_map>
#include <vector>

Y
Yu Yang 已提交
24
#include "glog/logging.h"  // For VLOG
Y
Yi Wang 已提交
25
#include "paddle/framework/attribute.h"
Q
qiaolongfei 已提交
26
#include "paddle/framework/block_desc.h"
Y
Yu Yang 已提交
27
#include "paddle/framework/framework.pb.h"
28
#include "paddle/framework/lod_tensor.h"
Y
Yu Yang 已提交
29
#include "paddle/framework/op_info.h"
Q
QI JUN 已提交
30
#include "paddle/framework/op_kernel_type.h"
Q
qijun 已提交
31
#include "paddle/framework/scope.h"
Q
QI JUN 已提交
32
#include "paddle/framework/selected_rows.h"
Q
qijun 已提交
33 34
#include "paddle/framework/tensor.h"
#include "paddle/platform/device_context.h"
Y
Yu Yang 已提交
35
#include "paddle/platform/variant.h"
Q
qijun 已提交
36
#include "paddle/utils/Error.h"
Q
Qiao Longfei 已提交
37 38 39 40

namespace paddle {
namespace framework {

41
/// If a variable is a empty variable, that name will be used.
42
constexpr char kEmptyVarName[] = "@EMPTY@";
43 44 45

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
46
constexpr char kTempVarName[] = "@TEMP@";
47 48 49 50

/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
51
constexpr char kGradVarSuffix[] = "@GRAD";
52 53

/// Variables with this suffix are supposed to be filled up with zeros.
54
constexpr char kZeroVarSuffix[] = "@ZERO";
55

D
dzhwinter 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
// define some kernel priority
extern std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority;

/**
 * @brief Use cpu kernel only
 */
void UseCPU();

/**
 * @brief Perfer MKLDNN kernel than Plain CPU kernel
 */
void UseMKLDNN();

/**
 * @brief Perfer CUDA kernel than Plain CPU kernel
 */
void UseCUDA();

/**
 * @brief Perfer cudnn kernel than Plain CUDA kernel
 */
void UseCUDNN();

/**
 * @brief Use all available kernels
 */
void UseALL();
Q
Qiao Longfei 已提交
83

84 85 86 87
inline std::string GradVarName(const std::string& var_name) {
  return var_name + kGradVarSuffix;
}

Q
Qiao Longfei 已提交
88
class OperatorBase;
89
class ExecutionContext;
90

Q
Qiao Longfei 已提交
91 92 93 94 95 96 97 98
/**
 * OperatorBase has the basic element that Net will call to do computation.
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
Y
Yu Yang 已提交
99 100
  OperatorBase(const std::string& type, const VariableNameMap& inputs,
               const VariableNameMap& outputs, const AttributeMap& attrs);
101

Q
Qiao Longfei 已提交
102 103 104
  virtual ~OperatorBase() {}

  template <typename T>
Y
Yu Yang 已提交
105
  inline const T& Attr(const std::string& name) const {
Q
Qiao Longfei 已提交
106 107 108 109 110
    PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
                   name);
    return boost::get<T>(attrs_.at(name));
  }

111 112 113 114
  /// if scope is not null, also show dimensions of arguments
  virtual std::string DebugStringEx(const Scope* scope) const;

  std::string DebugString() const { return DebugStringEx(nullptr); }
Q
Qiao Longfei 已提交
115 116

  /// Net will call this function to Run an op.
D
dzhwinter 已提交
117
  virtual void Run(const Scope& scope, const platform::Place& place) const = 0;
Y
Yu Yang 已提交
118

T
typhoonzero 已提交
119 120 121
  // FIXME(typhoonzero): this is only used for recv_op to stop event_loop.
  virtual void Stop() {}

Y
Yu Yang 已提交
122 123
  virtual bool IsNetOp() const { return false; }

124 125
  virtual bool SupportGPU() const { return false; }

D
dongzhihong 已提交
126 127 128
  /// rename inputs outputs name
  void Rename(const std::string& old_name, const std::string& new_name);

Y
Yu Yang 已提交
129 130
  const VariableNameMap& Inputs() const { return inputs_; }
  const VariableNameMap& Outputs() const { return outputs_; }
131

Y
Yu Yang 已提交
132
  //! Get a input with argument's name described in `op_proto`
133
  std::string Input(const std::string& name) const;
Y
Yu Yang 已提交
134
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
135
  const std::vector<std::string>& Inputs(const std::string& name) const;
Y
Yi Wang 已提交
136

Q
qijun 已提交
137 138
  std::vector<std::string> InputVars() const;

Y
Yu Yang 已提交
139
  //! Get a output with argument's name described in `op_proto`
140
  std::string Output(const std::string& name) const;
Y
Yu Yang 已提交
141 142
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
143
  const std::vector<std::string>& Outputs(const std::string& name) const;
Y
Yan Chunwei 已提交
144

Y
Yu Yang 已提交
145
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
146

Q
qiaolongfei 已提交
147
  const std::string& Type() const { return type_; }
Q
qiaolongfei 已提交
148
  void SetType(const std::string& type) { type_ = type; }
Y
Yi Wang 已提交
149 150
  const AttributeMap& Attrs() const { return attrs_; }

Y
Yu Yang 已提交
151
  // Return a new operator instance, which is as same as this.
Y
Yu Yang 已提交
152 153
  // Use unique_ptr to prevent caller forget to delete this pointer.
  virtual std::unique_ptr<OperatorBase> Clone() const = 0;
Y
Yu Yang 已提交
154

Q
qiaolongfei 已提交
155
 protected:
Q
Qiao Longfei 已提交
156
  std::string type_;
D
dongzhihong 已提交
157
  // NOTE: in case of OpGrad, inputs_ contains:
158
  // I (Inputs)
D
dongzhihong 已提交
159 160
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
161
  VariableNameMap inputs_;
Y
Yu Yang 已提交
162

D
dongzhihong 已提交
163 164
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
165
  VariableNameMap outputs_;
Q
Qiao Longfei 已提交
166
  AttributeMap attrs_;
167 168 169 170

 private:
  void GenerateTemporaryNames();
  void CheckAllInputOutputSet() const;
Y
Yan Chunwei 已提交
171 172
};

Y
Yu Yang 已提交
173 174
// Macro for define a clone method.
// If you are writing an kernel operator, `Clone` will be defined when you
175
// register it. i.e. `Clone` method is not needed to define by yourself.
176 177 178
#define DEFINE_OP_CLONE_METHOD(cls)                                            \
  std::unique_ptr<::paddle::framework::OperatorBase> Clone() const final {     \
    return std::unique_ptr<::paddle::framework::OperatorBase>(new cls(*this)); \
Y
Yu Yang 已提交
179
  }
Y
Yu Yang 已提交
180

Y
Yu Yang 已提交
181 182 183 184
// Macro for define a default constructor for Operator.
// You can also use
//   using PARENT_CLASS::PARENT_CLASS;
// to use parent's constructor.
Y
Yu Yang 已提交
185 186
#define DEFINE_OP_CONSTRUCTOR(cls, parent_cls)             \
  cls(const std::string& type,                             \
Y
Yu Yang 已提交
187 188 189
      const ::paddle::framework::VariableNameMap& inputs,  \
      const ::paddle::framework::VariableNameMap& outputs, \
      const paddle::framework::AttributeMap& attrs)        \
Y
Yu Yang 已提交
190
      : parent_cls(type, inputs, outputs, attrs) {}
Y
Yu Yang 已提交
191

192 193
class NOP : public OperatorBase {
 public:
194
  using OperatorBase::OperatorBase;
D
dzhwinter 已提交
195
  void Run(const Scope& scope, const platform::Place& place) const override {}
196 197 198
  std::unique_ptr<OperatorBase> Clone() const override {
    return std::unique_ptr<OperatorBase>(new NOP(*this));
  }
199 200
};

201
class ExecutionContext {
Y
Yan Chunwei 已提交
202
 public:
203 204 205
  ExecutionContext(const OperatorBase& op, const Scope& scope,
                   const platform::DeviceContext& device_context)
      : op_(op), scope_(scope), device_context_(device_context) {}
206

Q
qiaolongfei 已提交
207 208 209 210
  const OperatorBase& op() const { return op_; }

  const Scope& scope() const { return scope_; }

Q
qiaolongfei 已提交
211
  template <typename T>
Y
Yu Yang 已提交
212 213
  inline const T& Attr(const std::string& name) const {
    return op_.Attr<T>(name);
Q
qiaolongfei 已提交
214 215
  }

Y
Yu Yang 已提交
216
  size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
217
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
218 219
  }

Y
Yu Yang 已提交
220
  size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
221
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
222 223
  }

224
  const Variable* InputVar(const std::string& name) const {
225
    auto ipt = op_.Input(name);
Y
Yu Yang 已提交
226
    return ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
Y
Yan Chunwei 已提交
227 228
  }

229
  Variable* OutputVar(const std::string& name) const {
230
    auto opt = op_.Output(name);
Y
Yu Yang 已提交
231
    return opt == kEmptyVarName ? nullptr : scope_.FindVar(opt);
Y
Yan Chunwei 已提交
232 233
  }

234 235
  const std::vector<const Variable*> MultiInputVar(
      const std::string& name) const {
Y
Yan Chunwei 已提交
236 237
    auto names = op_.Inputs(name);
    std::vector<const Variable*> res;
238
    res.reserve(names.size());
239 240
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
241 242
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
243
                   });
Y
Yan Chunwei 已提交
244 245 246
    return res;
  }

247
  std::vector<Variable*> MultiOutputVar(const std::string& name) const {
Y
Yan Chunwei 已提交
248
    auto names = op_.Outputs(name);
249
    std::vector<Variable*> res;
250
    res.reserve(names.size());
251 252
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
253 254
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
255
                   });
Y
Yan Chunwei 已提交
256 257 258
    return res;
  }

259 260
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
261
    auto* var = InputVar(name);
262
    return var == nullptr ? nullptr : &var->Get<T>();
263 264 265 266
  }

  template <typename T>
  T* Output(const std::string& name) const {
267
    auto var = OutputVar(name);
268
    return var == nullptr ? nullptr : var->GetMutable<T>();
269 270 271 272 273 274 275 276
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
    auto names = op_.Inputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
277
                   [&](const std::string& sub_name) {
278
                     auto var = scope_.FindVar(sub_name);
279
                     return var == nullptr ? nullptr : &var->Get<T>();
280 281 282 283 284
                   });
    return res;
  }

  template <typename T>
285
  std::vector<T*> MultiOutput(const std::string& name) const {
286
    auto names = op_.Outputs(name);
287
    std::vector<T*> res;
288 289
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
290
                   [&](const std::string& sub_name) {
291
                     auto var = scope_.FindVar(sub_name);
292
                     return var == nullptr ? nullptr : var->GetMutable<T>();
293 294 295 296
                   });
    return res;
  }

297 298 299 300 301 302
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const {
    PADDLE_ENFORCE_LT(i, InputSize(in));
    PADDLE_ENFORCE_LT(j, OutputSize(out));
    auto* in_var = MultiInputVar(in)[i];
    auto* out_var = MultiOutputVar(out)[j];
303
    if (!in_var->IsType<LoDTensor>()) return;
304
    PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
305
                   "The %d-th output of Output(%s) must be LoDTensor.", j, out);
306 307 308
    auto in_tensor = in_var->Get<LoDTensor>();
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
309 310
  }

311
  platform::Place GetPlace() const { return device_context_.GetPlace(); }
Q
qijun 已提交
312

Q
QI JUN 已提交
313 314 315 316 317
  template <typename DeviceContextType>
  const DeviceContextType& device_context() const {
    return *reinterpret_cast<const DeviceContextType*>(&device_context_);
  }

318
  const platform::DeviceContext& device_context() const {
Q
qijun 已提交
319
    return device_context_;
Q
qijun 已提交
320
  }
Q
qijun 已提交
321

Q
QI JUN 已提交
322 323 324 325 326 327 328 329
#ifdef PADDLE_WITH_CUDA
  const inline platform::CUDADeviceContext& cuda_device_context() const {
    PADDLE_ENFORCE(platform::is_gpu_place(device_context_.GetPlace()));
    return *reinterpret_cast<const platform::CUDADeviceContext*>(
        &device_context_);
  }
#endif

D
dzhwinter 已提交
330
  //! Get actual name vector for this input.
D
Dong Zhihong 已提交
331 332 333
  const std::vector<std::string>& Inputs(const std::string& name) const {
    return op_.Inputs(name);
  }
D
Dong Zhihong 已提交
334

D
dzhwinter 已提交
335
  //! Get actual name vector for this output.
D
Dong Zhihong 已提交
336 337 338 339
  const std::vector<std::string>& Outputs(const std::string& name) const {
    return op_.Outputs(name);
  }

340
 private:
341 342
  const OperatorBase& op_;
  const Scope& scope_;
343
  const platform::DeviceContext& device_context_;
Q
Qiao Longfei 已提交
344 345
};

346 347 348 349 350 351 352 353 354 355 356 357 358 359
template <>
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const;

template <>
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
    const std::string& name) const;

template <>
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const;

template <>
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
    const std::string& name) const;

Y
Yu Yang 已提交
360
class OpKernelBase {
Q
qijun 已提交
361
 public:
Q
qijun 已提交
362
  /**
363
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
364 365
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
366
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
367 368
   */

369
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
370

Y
Yu Yang 已提交
371 372 373 374 375 376 377
  virtual ~OpKernelBase() = default;
};

template <typename T>
class OpKernel : public OpKernelBase {
 public:
  using ELEMENT_TYPE = T;
Y
Yu Yang 已提交
378 379
};

Y
Yu Yang 已提交
380 381
class OperatorWithKernel : public OperatorBase {
 public:
Y
Yu Yang 已提交
382
  using OpKernelMap =
Y
Yu Yang 已提交
383 384
      std::unordered_map<OpKernelType, std::unique_ptr<OpKernelBase>,
                         OpKernelType::Hash>;
Q
Qiao Longfei 已提交
385

Y
Yu Yang 已提交
386 387
  OperatorWithKernel(const std::string& type, const VariableNameMap& inputs,
                     const VariableNameMap& outputs, const AttributeMap& attrs)
Y
Yu Yang 已提交
388 389
      : OperatorBase(type, inputs, outputs, attrs) {}

D
dzhwinter 已提交
390
  void Run(const Scope& scope, const platform::Place& place) const final;
Q
Qiao Longfei 已提交
391

Y
Yu Yang 已提交
392 393 394 395
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
396
  }
Y
Yan Chunwei 已提交
397

398
  bool SupportGPU() const override {
Y
Yu Yang 已提交
399 400 401 402 403
    auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
    return std::any_of(op_kernels.begin(), op_kernels.end(),
                       [](OpKernelMap::const_reference kern_pair) {
                         return platform::is_gpu_place(kern_pair.first.place_);
                       });
404 405
  }

406 407 408
  virtual void InferShape(InferShapeContext* ctx) const {
    OpInfoMap::Instance().Get(Type()).infer_shape_(ctx);
  }
Y
Yu Yang 已提交
409

Q
qiaolongfei 已提交
410
 protected:
411 412 413 414
  virtual OpKernelType GetExpectedKernelType(const ExecutionContext& ctx) const;
  virtual OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const OpKernelType& expected_kernel_type) const;
Y
Yu Yang 已提交
415 416

 private:
Y
Yu Yang 已提交
417 418
  // indicate kernel DataType by input data. Defaultly all input data must be
  // same.
419
  proto::DataType IndicateDataType(const ExecutionContext& ctx) const;
Q
Qiao Longfei 已提交
420 421
};

Y
Yu Yang 已提交
422 423
extern bool OpSupportGPU(const std::string& op_type);

Q
Qiao Longfei 已提交
424 425
}  // namespace framework
}  // namespace paddle