elementwise_mul_op.cu 6.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/elementwise/elementwise_mul_op.h"
16
#include "paddle/fluid/operators/elementwise/elementwise_op_broadcast.cu.h"
17
#include "paddle/fluid/platform/complex.h"
W
Wu Yi 已提交
18
#include "paddle/fluid/platform/float16.h"
19 20

namespace ops = paddle::operators;
W
Wu Yi 已提交
21
namespace plat = paddle::platform;
22

23 24 25
namespace paddle {
namespace operators {

26 27 28 29 30
template <typename T>
class ElementwiseMulKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
31
    framework::Tensor x_for_selectedrows;
32 33 34 35 36
    std::vector<const framework::Tensor*> ins;
    std::vector<framework::Tensor*> outs;
    const auto& cuda_ctx =
        ctx.template device_context<platform::CUDADeviceContext>();

37
    int axis = PackTensorsIntoVector<T>(ctx, &ins, &outs, &x_for_selectedrows);
38
    LaunchElementwiseCudaKernel<ElementwiseType::kBinary, T, T>(
39
        cuda_ctx, ins, &outs, axis, MulFunctor<T>());
40 41 42
  }
};

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
template <typename T>
static __global__ void SimpleElemwiseMulGradCUDAKernel(const T* x, const T* y,
                                                       const T* out,
                                                       const T* dout,
                                                       int64_t size, T* dx,
                                                       T* dy) {
  int col = blockIdx.x * blockDim.x + threadIdx.x;

  while (col < size) {
    T o = dout[col];
    dx[col] = y[col] * o;
    dy[col] = x[col] * o;
    col += blockDim.x * gridDim.x;
  }
}

59
template <>
60 61 62 63
__global__ void SimpleElemwiseMulGradCUDAKernel<plat::complex<float>>(
    const plat::complex<float>* x, const plat::complex<float>* y,
    const plat::complex<float>* out, const plat::complex<float>* dout,
    int64_t size, plat::complex<float>* dx, plat::complex<float>* dy) {
64 65 66
  int col = blockIdx.x * blockDim.x + threadIdx.x;

  while (col < size) {
67 68 69
    plat::complex<float> o = dout[col];
    dx[col] = plat::complex<float>(y[col].real, -y[col].imag) * o;
    dy[col] = plat::complex<float>(x[col].real, -x[col].imag) * o;
70 71 72 73 74
    col += blockDim.x * gridDim.x;
  }
}

template <>
75 76 77 78
__global__ void SimpleElemwiseMulGradCUDAKernel<plat::complex<double>>(
    const plat::complex<double>* x, const plat::complex<double>* y,
    const plat::complex<double>* out, const plat::complex<double>* dout,
    int64_t size, plat::complex<double>* dx, plat::complex<double>* dy) {
79 80 81
  int col = blockIdx.x * blockDim.x + threadIdx.x;

  while (col < size) {
82 83 84
    plat::complex<double> o = dout[col];
    dx[col] = plat::complex<double>(y[col].real, -y[col].imag) * o;
    dy[col] = plat::complex<double>(x[col].real, -x[col].imag) * o;
85 86 87 88
    col += blockDim.x * gridDim.x;
  }
}

89 90 91 92 93 94 95 96
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, plat::CUDADeviceContext>::value>::type
elementwise_mul_grad(const framework::ExecutionContext& ctx,
                     const framework::Tensor* x, const framework::Tensor* y,
                     const framework::Tensor* out,
                     const framework::Tensor* dout, framework::Tensor* dx,
                     framework::Tensor* dy) {
97
  dim3 block_size = dim3(ELEMENTWISE_BLOCK_SIZE, 1);
98
  auto size = x->numel();
99
  dim3 grid_size =
100
      dim3((size + ELEMENTWISE_BLOCK_SIZE - 1) / ELEMENTWISE_BLOCK_SIZE, 1);
101
  SimpleElemwiseMulGradCUDAKernel<
102
      T><<<grid_size, block_size, 0,
103 104 105 106
           ctx.template device_context<plat::CUDADeviceContext>().stream()>>>(
      x->data<T>(), y->data<T>(), out->data<T>(), dout->data<T>(), size,
      dx->mutable_data<T>(ctx.GetPlace()), dy->mutable_data<T>(ctx.GetPlace()));
}
107 108 109 110

}  // namespace operators
}  // namespace paddle

Q
QI JUN 已提交
111
REGISTER_OP_CUDA_KERNEL(
W
Wu Yi 已提交
112 113 114 115
    elementwise_mul, ops::ElementwiseMulKernel<plat::CUDADeviceContext, float>,
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, double>,
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, int>,
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, int64_t>,
W
will-jl944 已提交
116
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, bool>,
117
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, plat::float16>,
118 119
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, plat::complex<float>>,
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, plat::complex<double>>);
Q
QI JUN 已提交
120
REGISTER_OP_CUDA_KERNEL(
121
    elementwise_mul_grad,
W
Wu Yi 已提交
122 123 124 125
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, float>,
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, double>,
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, int>,
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, int64_t>,
W
will-jl944 已提交
126
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, bool>,
127
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, plat::float16>,
128 129 130 131
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext,
                                  plat::complex<float>>,
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext,
                                  plat::complex<double>>);
132 133 134 135 136
REGISTER_OP_CUDA_KERNEL(
    elementwise_mul_grad_grad,
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, float>,
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, double>,
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, int>,
137
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, int64_t>,
W
will-jl944 已提交
138
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, bool>,
139
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, plat::float16>,
140
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext,
141
                                        plat::complex<float>>,
142
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext,
143
                                        plat::complex<double>>);
144 145 146 147 148 149 150 151 152 153 154 155
REGISTER_OP_CUDA_KERNEL(
    elementwise_mul_triple_grad,
    ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext, float>,
    ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext, double>,
    ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext, int>,
    ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext, int64_t>,
    ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext, bool>,
    ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext, plat::float16>,
    ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext,
                                        plat::complex<float>>,
    ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext,
                                        plat::complex<double>>);