dist_multi_trainer.cc 7.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <string>
#include <vector>
17
#include "io/fs.h"
18
#include "paddle/fluid/framework/data_feed_factory.h"
D
dongdaxiang 已提交
19
#include "paddle/fluid/framework/data_set.h"
20
#include "paddle/fluid/framework/device_worker_factory.h"
21
#include "paddle/fluid/framework/fleet/fleet_wrapper.h"
22 23 24 25 26
#include "paddle/fluid/framework/trainer.h"

namespace paddle {
namespace framework {

27 28
void DistMultiTrainer::Initialize(const TrainerDesc &trainer_desc,
                                  Dataset *dataset) {
29
  thread_num_ = trainer_desc.thread_num();
30
  SetDataset(dataset);
D
dongdaxiang 已提交
31

32 33 34 35 36 37 38
  dump_fields_path_ = trainer_desc.dump_fields_path();
  dump_converter_ = trainer_desc.dump_converter();
  need_dump_field_ = false;
  if (trainer_desc.dump_fields_size() != 0 && dump_fields_path_ != "") {
    need_dump_field_ = true;
  }
  if (need_dump_field_) {
39
    auto &file_list = dataset->GetFileList();
40 41 42 43
    if (file_list.size() == 0) {
      need_dump_field_ = false;
    }
  }
X
xujiaqi01 已提交
44 45
  mpi_rank_ = trainer_desc.mpi_rank();
  mpi_size_ = trainer_desc.mpi_size();
T
Thunderbrook 已提交
46
  dump_file_num_ = trainer_desc.dump_file_num();
47
  user_define_dump_filename_ = trainer_desc.user_define_dump_filename();
48
  const std::vector<paddle::framework::DataFeed *> readers =
49
      dataset->GetReaders();
50

51 52
  thread_num_ = readers.size();
  workers_.resize(thread_num_);
53 54 55 56 57
  for (int i = 0; i < trainer_desc.downpour_param().stat_var_names_size();
       i++) {
    need_merge_var_names_.push_back(
        trainer_desc.downpour_param().stat_var_names(i));
  }
58

59 60 61 62
  for (int i = 0; i < thread_num_; ++i) {
    workers_[i] = DeviceWorkerFactory::CreateDeviceWorker(
        trainer_desc.device_worker_name());
    workers_[i]->SetDeviceIndex(i);
D
dongdaxiang 已提交
63
    workers_[i]->SetDataFeed(readers[i]);
64
    workers_[i]->Initialize(trainer_desc);
65
    workers_[i]->SetNeedDump(need_dump_field_);
66 67
  }

D
dongdaxiang 已提交
68
  VLOG(3) << "going to initialize pull dense worker";
69 70
  pull_dense_worker_ = PullDenseWorker::GetInstance();
  pull_dense_worker_->Initialize(trainer_desc);
D
dongdaxiang 已提交
71
  VLOG(3) << "initialize pull dense worker";
72
  SetDebug(trainer_desc.debug());
73 74
}

T
Thunderbrook 已提交
75
void DistMultiTrainer::DumpWork(int tid) {
76
#ifdef _LINUX
T
Thunderbrook 已提交
77 78 79 80
  int err_no = 0;
  std::string path = string::format_string(
      "%s/part-%03d-%05d", dump_fields_path_.c_str(), mpi_rank_, tid);

81 82 83 84 85
  if (user_define_dump_filename_ != "") {
    path = string::format_string("%s/part-%s", dump_fields_path_.c_str(),
                                 user_define_dump_filename_.c_str());
  }

T
Thunderbrook 已提交
86
  std::shared_ptr<FILE> fp = fs_open_write(path, &err_no, dump_converter_);
87 88 89 90 91 92
  while (1) {
    std::string out_str;
    if (!queue_->Get(out_str)) {
      break;
    }
    size_t write_count =
T
Thunderbrook 已提交
93
        fwrite_unlocked(out_str.data(), 1, out_str.length(), fp.get());
94 95 96 97
    if (write_count != out_str.length()) {
      VLOG(3) << "dump text failed";
      continue;
    }
T
Thunderbrook 已提交
98
    write_count = fwrite_unlocked("\n", 1, 1, fp.get());
99 100 101 102 103 104 105 106 107 108 109 110 111
    if (write_count != 1) {
      VLOG(3) << "dump text failed";
      continue;
    }
  }
#endif
}

void DistMultiTrainer::InitDumpEnv() {
  queue_ = paddle::framework::MakeChannel<std::string>();
  for (int i = 0; i < thread_num_; ++i) {
    workers_[i]->SetChannelWriter(queue_.get());
  }
T
Thunderbrook 已提交
112 113 114 115 116 117 118 119 120 121 122
  dump_thread_num_ = 1;
  if (dump_file_num_ > mpi_size_) {
    dump_thread_num_ = dump_file_num_ / mpi_size_;
    if (dump_file_num_ % mpi_size_ > mpi_rank_) {
      dump_thread_num_ += 1;
    }
  }
  for (int i = 0; i < dump_thread_num_; i++) {
    dump_thread_.push_back(
        std::thread(std::bind(&DistMultiTrainer::DumpWork, this, i)));
  }
123 124 125 126
}

void DistMultiTrainer::FinalizeDumpEnv() {
  queue_->Close();
T
Thunderbrook 已提交
127 128 129
  for (auto &th : dump_thread_) {
    th.join();
  }
130 131 132
  queue_.reset();
}

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
void DistMultiTrainer::InitTrainerEnv(const ProgramDesc &main_program,
                                      const platform::Place &place) {
  for (int i = 0; i < thread_num_; ++i) {
    workers_[i]->SetPlace(place);
    workers_[i]->SetReaderPlace(place);
    workers_[i]->SetRootScope(root_scope_);
    workers_[i]->CreateDeviceResource(main_program);  // Program
    workers_[i]->BindingDataFeedMemory();
  }
  // Scope* -> thread id, it will be used in push_dense op
  for (int i = 0; i < thread_num_; ++i) {
    Scope *thread_scope = workers_[i]->GetThreadScope();
    pull_dense_worker_->SetThreadIdByScope(thread_scope, i);
  }
}

149
void DistMultiTrainer::InitOtherEnv(const ProgramDesc &main_program) {
150 151 152
  if (need_dump_field_) {
    InitDumpEnv();
  }
153
  pull_dense_worker_->SetRootScope(root_scope_);
154
  pull_dense_worker_->Start();
D
dongdaxiang 已提交
155
  VLOG(3) << "init other env done.";
156 157
}

158 159 160 161 162 163 164 165 166 167 168 169
void DistMultiTrainer::Run() {
  for (int thidx = 0; thidx < thread_num_; ++thidx) {
    if (!debug_) {
      threads_.push_back(
          std::thread(&DeviceWorker::TrainFiles, workers_[thidx].get()));
    } else {
      threads_.push_back(std::thread(&DeviceWorker::TrainFilesWithProfiler,
                                     workers_[thidx].get()));
    }
  }
}

170 171 172 173
Scope *DistMultiTrainer::GetWorkerScope(int thread_id) {
  return workers_[thread_id]->GetThreadScope();
}

174
void DistMultiTrainer::Finalize() {
175
  for (auto &th : threads_) {
176 177
    th.join();
  }
178
  for (size_t i = 0; i < need_merge_var_names_.size(); i++) {
179 180 181 182 183 184 185 186 187 188 189 190 191
    Variable *root_var = root_scope_->FindVar(need_merge_var_names_[i]);
    if (root_var == nullptr) {
      continue;
    }
    LoDTensor *root_tensor = root_var->GetMutable<LoDTensor>();
    for (int j = 1; j < thread_num_; j++) {
      Scope *cur_thread_scope = workers_[j]->GetThreadScope();
      Variable *thread_var =
          cur_thread_scope->FindVar(need_merge_var_names_[i]);
      LoDTensor *thread_tensor = thread_var->GetMutable<LoDTensor>();
      if (root_tensor->numel() != thread_tensor->numel()) {
        continue;
      }
192 193 194 195 196 197 198 199 200 201 202 203
#define MergeCallback(cpp_type, proto_type)                                    \
  do {                                                                         \
    if (root_tensor->type() == proto_type) {                                   \
      if (thread_tensor->type() != proto_type) {                               \
        VLOG(0) << "Error: thread id=" << j << ", need_merge_var_names_[" << i \
                << "] " << need_merge_var_names_[i]                            \
                << ", root tensor type=" << root_tensor->type()                \
                << ", thread tensor type=" << thread_tensor->type();           \
        exit(-1);                                                              \
      }                                                                        \
      MergeToRootScope<cpp_type>(root_tensor, thread_tensor);                  \
    }                                                                          \
204 205 206 207 208
  } while (0)
      _ForEachDataType_(MergeCallback);
    }
  }

209 210 211
  if (need_dump_field_) {
    FinalizeDumpEnv();
  }
212
  pull_dense_worker_->Stop();
213
  root_scope_->DropKids();
214 215 216 217

  // flush local client push queue
  auto fleet_ptr_ = FleetWrapper::GetInstance();
  fleet_ptr_->ClientFlush();
218 219
}

220 221 222 223 224 225 226 227 228
template <typename T>
void DistMultiTrainer::MergeToRootScope(LoDTensor *root_tensor,
                                        LoDTensor *tensor) {
  T *root_data = root_tensor->data<T>();
  T *data = tensor->data<T>();
  for (int i = 0; i < tensor->numel(); i++) {
    root_data[i] += data[i];
  }
}
229 230
}  // namespace framework
}  // namespace paddle