fuse_gemm_epilogue_pass.cc 21.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
// Copyright (c) 2022 NVIDIA Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/ir/fuse_gemm_epilogue_pass.h"
#include <string>
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/platform/enforce.h"

R
root 已提交
21 22
PADDLE_DEFINE_EXPORTED_bool(enable_gemm_fwd_fusion, true, "");

23 24 25 26
namespace paddle {
namespace framework {
namespace ir {

R
root 已提交
27 28 29 30 31 32
static void GetTransposeAttrsFromOp(const OpDesc &op, bool *trans_x,
                                    bool *trans_y) {
  *trans_x = BOOST_GET_CONST(bool, op.GetAttr("trans_x"));
  *trans_y = BOOST_GET_CONST(bool, op.GetAttr("trans_y"));
}

33 34 35
void FuseGemmEpiloguePass::ApplyImpl(ir::Graph *graph) const {
  EpiloguePassActivationCache cache;

R
root 已提交
36 37 38 39 40 41 42
  if (FLAGS_enable_gemm_fwd_fusion) {
    graph = FuseLinearActFwd(graph, {"relu", "gelu"}, false, false, &cache);
    graph = FuseLinearActFwd(graph, {"relu"}, true, true, &cache);
    graph = FuseLinearActFwd(graph, {"gelu"}, true, false, &cache);
    graph = FuseLinearFwd(graph, false);
    graph = FuseLinearFwd(graph, true);
  }
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
  graph = FuseLinearActBwd(graph, {"relu_grad"}, true, &cache);
  graph = FuseLinearActBwd(graph, {"gelu_grad"}, false, &cache);
  graph = FuseLinearBwd(graph, false);
  graph = FuseLinearBwd(graph, true);
}

ir::Graph *FuseGemmEpiloguePass::FuseLinearFwd(ir::Graph *graph,
                                               bool is_training) const {
  PADDLE_ENFORCE_NOT_NULL(
      graph, platform::errors::InvalidArgument("Graph cannot be nullptr."));
  const std::string scope_name("gemm_epilogue");
  FusePassBase::Init(scope_name, graph);

  GraphPatternDetector gpd;
  auto *x = gpd.mutable_pattern()
                ->NewNode(patterns::PDNodeName(scope_name, "x"))
                ->AsInput()
                ->assert_is_op_input("matmul_v2", "X");
  patterns::LinearAct linear_act_pattern(gpd.mutable_pattern(), "linear_act");

  linear_act_pattern(x, {}, is_training, false);

  int found_linear_count = 0;

  auto handler = [&](const GraphPatternDetector::subgraph_t &subgraph,
                     Graph *g) {
    VLOG(4) << "handle LinearAct fuse";

    GET_IR_NODE_FROM_SUBGRAPH(matmul_op, matmul, linear_act_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(matmul_w, matmul_w, linear_act_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(matmul_out, matmul_out, linear_act_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(ele_add_op, ele_add, linear_act_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(ele_bias, ele_bias, linear_act_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(ele_out, elewise_add_out, linear_act_pattern);

    std::vector<int64_t> matmul_x_shape = subgraph.at(x)->Var()->GetShape();
    std::vector<int64_t> matmul_w_shape = matmul_w->Var()->GetShape();

    // Note (Ming Huang): We only support matmul_v2 from paddle.nn.Linear
    // currently. The conditions below are used to verify wether matmul_v2
    // is created by paddle.nn.Linear
    auto matmul_op_desc = matmul_op->Op();
    if (!IsGemmFromLinear_(matmul_x_shape, matmul_w_shape, matmul_op_desc))
      return;

R
root 已提交
88 89 90
    bool trans_x, trans_y;
    GetTransposeAttrsFromOp(*matmul_op_desc, &trans_x, &trans_y);

91 92 93 94 95 96 97 98 99 100
    OpDesc fused_gemm_epilogue_op_desc(matmul_op->Op()->Block());
    std::string activation = "none";
    fused_gemm_epilogue_op_desc.SetType("fused_gemm_epilogue");
    fused_gemm_epilogue_op_desc.SetInput("X", {subgraph.at(x)->Name()});
    fused_gemm_epilogue_op_desc.SetInput("Y", {matmul_w->Name()});
    fused_gemm_epilogue_op_desc.SetInput("Bias", {ele_bias->Name()});
    fused_gemm_epilogue_op_desc.SetOutput("Out", {ele_out->Name()});
    fused_gemm_epilogue_op_desc.SetAttr("activation", activation);
    fused_gemm_epilogue_op_desc.SetAttr("op_role",
                                        matmul_op_desc->GetAttr("op_role"));
R
root 已提交
101 102
    fused_gemm_epilogue_op_desc.SetAttr("trans_x", trans_x);
    fused_gemm_epilogue_op_desc.SetAttr("trans_y", trans_y);
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
    auto gemm_epilogue_node = g->CreateOpNode(&fused_gemm_epilogue_op_desc);

    IR_NODE_LINK_TO(subgraph.at(x), gemm_epilogue_node);
    IR_NODE_LINK_TO(matmul_w, gemm_epilogue_node);
    IR_NODE_LINK_TO(ele_bias, gemm_epilogue_node);
    IR_NODE_LINK_TO(gemm_epilogue_node, ele_out);

    GraphSafeRemoveNodes(g, {matmul_op, matmul_out, ele_add_op});

    VLOG(4) << "\n\t " << subgraph.at(x)->Name() << " and " << matmul_w->Name()
            << " -> " << matmul_op->Name() << " -> " << matmul_out->Name()
            << "\n\t " << matmul_out->Name() << " and " << ele_bias->Name()
            << " -> " << ele_add_op->Name() << " -> " << ele_out->Name()
            << "\n\t " << ele_out->Name();
    found_linear_count++;
  };

  gpd(graph, handler);

  AddStatis(found_linear_count);
  return graph;
}

ir::Graph *FuseGemmEpiloguePass::FuseLinearActFwd(
    ir::Graph *graph, const std::unordered_set<std::string> &act_types,
    bool is_training, bool is_act_grad_x_from_act,
    EpiloguePassActivationCache *cache) const {
  PADDLE_ENFORCE_NOT_NULL(
      graph, platform::errors::InvalidArgument("Graph cannot be nullptr."));

  const std::string scope_name("gemm_epilogue");
  FusePassBase::Init(scope_name, graph);

  GraphPatternDetector gpd;
  auto *x = gpd.mutable_pattern()
                ->NewNode(patterns::PDNodeName(scope_name, "x"))
                ->AsInput()
                ->assert_is_op_input("matmul_v2", "X");
  patterns::LinearAct linear_act_pattern(gpd.mutable_pattern(), "linear_act");

  linear_act_pattern(x, act_types, is_training, is_act_grad_x_from_act);

  int found_linear_act_count = 0;

  auto handler = [&](const GraphPatternDetector::subgraph_t &subgraph,
                     Graph *g) {
    VLOG(4) << "handle LinearAct fuse";

    GET_IR_NODE_FROM_SUBGRAPH(matmul_op, matmul, linear_act_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(matmul_w, matmul_w, linear_act_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(matmul_out, matmul_out, linear_act_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(ele_add_op, ele_add, linear_act_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(ele_bias, ele_bias, linear_act_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(ele_out, elewise_add_out, linear_act_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(act_op, act, linear_act_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(act_out, act_out, linear_act_pattern);

    std::vector<int64_t> matmul_x_shape = subgraph.at(x)->Var()->GetShape();
    std::vector<int64_t> matmul_w_shape = matmul_w->Var()->GetShape();

    // Note (Ming Huang): We only support matmul_v2 from paddle.nn.Linear
    // currently. The conditions below are used to verify wether matmul_v2
    // is created by paddle.nn.Linear
    auto matmul_op_desc = matmul_op->Op();
    if (!IsGemmFromLinear_(matmul_x_shape, matmul_w_shape, matmul_op_desc))
      return;

    auto activation = act_op->Op()->Type();

R
root 已提交
172 173 174
    bool trans_x, trans_y;
    GetTransposeAttrsFromOp(*matmul_op_desc, &trans_x, &trans_y);

175 176 177 178 179 180 181 182 183
    OpDesc fused_gemm_epilogue_op_desc(matmul_op->Op()->Block());
    fused_gemm_epilogue_op_desc.SetType("fused_gemm_epilogue");
    fused_gemm_epilogue_op_desc.SetInput("X", {subgraph.at(x)->Name()});
    fused_gemm_epilogue_op_desc.SetInput("Y", {matmul_w->Name()});
    fused_gemm_epilogue_op_desc.SetInput("Bias", {ele_bias->Name()});
    fused_gemm_epilogue_op_desc.SetOutput("Out", {act_out->Name()});
    fused_gemm_epilogue_op_desc.SetAttr("activation", activation);
    fused_gemm_epilogue_op_desc.SetAttr("op_role",
                                        matmul_op_desc->GetAttr("op_role"));
R
root 已提交
184 185
    fused_gemm_epilogue_op_desc.SetAttr("trans_x", trans_x);
    fused_gemm_epilogue_op_desc.SetAttr("trans_y", trans_y);
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296

    auto gemm_epilogue_node = g->CreateOpNode(&fused_gemm_epilogue_op_desc);

    IR_NODE_LINK_TO(subgraph.at(x), gemm_epilogue_node);
    IR_NODE_LINK_TO(matmul_w, gemm_epilogue_node);
    IR_NODE_LINK_TO(ele_bias, gemm_epilogue_node);
    IR_NODE_LINK_TO(gemm_epilogue_node, act_out);

    // Only need to check weight.shape[1] for auxiliary pointer
    // and mark it the act op is fused for backward epilogue fusion.
    // That because cuBlasLt epilogue's restriction.
    if (is_training) {
      int divisor_of_n = activation == "relu" ? 128 : 8;
      if (matmul_w_shape[1] % divisor_of_n) return;

      VarDesc reserve_space(patterns::PDNodeName(scope_name, "ReserveSpace"));
      auto *reserve_space_node = g->CreateVarNode(&reserve_space);

      cache->InsertFusedActivation(
          GetReserveSpaceCacheKey(act_out->Var()->Name(), g->GetBlockId()),
          reserve_space_node);

      gemm_epilogue_node->Op()->SetOutput("ReserveSpace",
                                          {reserve_space_node->Name()});

      if (!is_act_grad_x_from_act) {
        GET_IR_NODE_FROM_SUBGRAPH(act_grad_op, act_grad, linear_act_pattern);
        act_grad_op->Op()->RenameInput(ele_out->Name(),
                                       reserve_space_node->Name());
        IR_NODE_LINK_TO(reserve_space_node, act_grad_op);
      }
      IR_NODE_LINK_TO(gemm_epilogue_node, reserve_space_node);
    }

    GraphSafeRemoveNodes(g,
                         {matmul_op, matmul_out, ele_add_op, ele_out, act_op});

    VLOG(4) << "\n\t " << subgraph.at(x)->Name() << " and " << matmul_w->Name()
            << " -> " << matmul_op->Name() << " -> " << matmul_out->Name()
            << "\n\t " << matmul_out->Name() << " and " << ele_bias->Name()
            << " -> " << ele_add_op->Name() << " -> " << ele_out->Name()
            << "\n\t " << ele_out->Name() << " -> " << act_op->Name() << " -> "
            << act_out->Name();
    found_linear_act_count++;
  };

  gpd(graph, handler);

  AddStatis(found_linear_act_count);
  return graph;
}

ir::Graph *FuseGemmEpiloguePass::FuseLinearBwd(ir::Graph *graph,
                                               bool without_x_gradient) const {
  PADDLE_ENFORCE_NOT_NULL(
      graph, platform::errors::InvalidArgument("Graph cannot be nullptr."));
  const std::string scope_name("gemm_epilogue");
  FusePassBase::Init(scope_name, graph);

  GraphPatternDetector gpd;
  auto *dout =
      gpd.mutable_pattern()
          ->NewNode(patterns::PDNodeName(scope_name, "dout"))
          ->AsInput()
          ->assert_is_op_input("elementwise_add_grad", GradVarName("Out"));

  patterns::ElewiseAddMatmulAct ele_add_matmul_act_pattern(
      gpd.mutable_pattern(), "ele_add_matmul_act");
  ele_add_matmul_act_pattern(dout, {}, without_x_gradient, false);

  int found_ele_add_matmul_act_count = 0;

  auto handler = [&](const GraphPatternDetector::subgraph_t &subgraph,
                     Graph *g) {
    VLOG(4) << "handle ElewiseAddMatmulAct fuse";

    GET_IR_NODE_FROM_SUBGRAPH(ele_add_grad_op, ele_add_grad,
                              ele_add_matmul_act_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(ele_grad_bias, ele_grad_bias,
                              ele_add_matmul_act_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(ele_grad_dx, ele_grad_dx,
                              ele_add_matmul_act_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(ele_grad_dbias, ele_grad_dbias,
                              ele_add_matmul_act_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(matmul_grad_op, matmul_grad,
                              ele_add_matmul_act_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(matmul_grad_x, matmul_grad_x,
                              ele_add_matmul_act_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(matmul_grad_w, matmul_grad_w,
                              ele_add_matmul_act_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(matmul_grad_dw, matmul_grad_dw,
                              ele_add_matmul_act_pattern);

    Node *matmul_grad_dx = nullptr;
    if (!without_x_gradient) {
      GET_IR_NODE_FROM_SUBGRAPH(matmul_grad_dx_ptr, matmul_grad_dx,
                                ele_add_matmul_act_pattern);
      matmul_grad_dx = matmul_grad_dx_ptr;
    }

    std::vector<int64_t> matmul_grad_x_shape = matmul_grad_x->Var()->GetShape();
    std::vector<int64_t> matmul_grad_w_shape = matmul_grad_w->Var()->GetShape();

    // Note (Ming Huang): We only support matmul_v2_grad from paddle.nn.Linear
    // currently. The conditions below are used to verify wether matmul_v2
    // is created by paddle.nn.Linear
    auto matmul_grad_op_desc = matmul_grad_op->Op();
    if (!IsGemmFromLinear_(matmul_grad_x_shape, matmul_grad_w_shape,
                           matmul_grad_op_desc))
      return;

R
root 已提交
297 298 299
    bool trans_x, trans_y;
    GetTransposeAttrsFromOp(*matmul_grad_op_desc, &trans_x, &trans_y);

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
    OpDesc fused_gemm_epilogue_grad_op_desc(ele_add_grad_op->Op()->Block());
    std::string activation_grad = "none";
    fused_gemm_epilogue_grad_op_desc.SetType("fused_gemm_epilogue_grad");
    fused_gemm_epilogue_grad_op_desc.SetInput("DOut",
                                              {subgraph.at(dout)->Name()});
    fused_gemm_epilogue_grad_op_desc.SetInput("X", {matmul_grad_x->Name()});
    fused_gemm_epilogue_grad_op_desc.SetInput("Y", {matmul_grad_w->Name()});
    if (matmul_grad_dx) {
      fused_gemm_epilogue_grad_op_desc.SetOutput("DX",
                                                 {matmul_grad_dx->Name()});
    }
    fused_gemm_epilogue_grad_op_desc.SetOutput("DY", {matmul_grad_dw->Name()});
    fused_gemm_epilogue_grad_op_desc.SetOutput("DBias",
                                               {ele_grad_dbias->Name()});
    fused_gemm_epilogue_grad_op_desc.SetAttr("activation_grad",
                                             activation_grad);
    fused_gemm_epilogue_grad_op_desc.SetAttr(
        "op_role", matmul_grad_op_desc->GetAttr("op_role"));
R
root 已提交
318 319
    fused_gemm_epilogue_grad_op_desc.SetAttr("trans_x", trans_x);
    fused_gemm_epilogue_grad_op_desc.SetAttr("trans_y", trans_y);
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421

    auto gemm_epilogue_grad_node =
        g->CreateOpNode(&fused_gemm_epilogue_grad_op_desc);

    IR_NODE_LINK_TO(subgraph.at(dout), gemm_epilogue_grad_node);
    IR_NODE_LINK_TO(matmul_grad_x, gemm_epilogue_grad_node);
    IR_NODE_LINK_TO(matmul_grad_w, gemm_epilogue_grad_node);
    IR_NODE_LINK_TO(gemm_epilogue_grad_node, matmul_grad_dw);
    IR_NODE_LINK_TO(gemm_epilogue_grad_node, ele_grad_dbias);
    if (matmul_grad_dx) {
      IR_NODE_LINK_TO(gemm_epilogue_grad_node, matmul_grad_dx);
    }

    GraphSafeRemoveNodes(g, {ele_add_grad_op, ele_grad_dx, matmul_grad_op});

    std::string matmul_grad_dx_name =
        matmul_grad_dx != nullptr ? matmul_grad_dx->Name() : " ";
    VLOG(4) << "\n\t " << subgraph.at(dout)->Name() << " and "
            << ele_grad_bias->Name() << " -> " << ele_add_grad_op->Name()
            << " -> " << ele_grad_dx->Name() << " and "
            << ele_grad_dbias->Name() << "\n\t " << ele_grad_dx->Name() << ", "
            << matmul_grad_x->Name() << " and " << matmul_grad_w->Name()
            << " -> " << matmul_grad_op->Name() << " -> "
            << matmul_grad_w->Name() << " and " << matmul_grad_dx_name;
    found_ele_add_matmul_act_count++;
  };

  gpd(graph, handler);

  AddStatis(found_ele_add_matmul_act_count);
  return graph;
}

ir::Graph *FuseGemmEpiloguePass::FuseLinearActBwd(
    ir::Graph *graph, const std::unordered_set<std::string> &act_grad_types,
    bool is_act_grad_x_from_act, EpiloguePassActivationCache *cache) const {
  PADDLE_ENFORCE_NOT_NULL(
      graph, platform::errors::InvalidArgument("Graph cannot be nullptr."));
  const std::string scope_name("gemm_epilogue");
  FusePassBase::Init(scope_name, graph);

  GraphPatternDetector gpd;
  auto *dout =
      gpd.mutable_pattern()
          ->NewNode(patterns::PDNodeName(scope_name, "dout"))
          ->AsInput()
          ->assert_is_op_input("elementwise_add_grad", GradVarName("Out"));

  patterns::ElewiseAddMatmulAct ele_add_matmul_act_pattern(
      gpd.mutable_pattern(), "ele_add_matmul_act");
  ele_add_matmul_act_pattern(dout, act_grad_types, false,
                             is_act_grad_x_from_act);

  int found_ele_add_matmul_act_count = 0;

  auto handler = [&](const GraphPatternDetector::subgraph_t &subgraph,
                     Graph *g) {
    VLOG(4) << "handle ElewiseAddMatmulAct fuse";

    GET_IR_NODE_FROM_SUBGRAPH(ele_add_grad_op, ele_add_grad,
                              ele_add_matmul_act_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(ele_grad_bias, ele_grad_bias,
                              ele_add_matmul_act_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(ele_grad_dx, ele_grad_dx,
                              ele_add_matmul_act_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(ele_grad_dbias, ele_grad_dbias,
                              ele_add_matmul_act_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(matmul_grad_op, matmul_grad,
                              ele_add_matmul_act_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(matmul_grad_x, matmul_grad_x,
                              ele_add_matmul_act_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(matmul_grad_w, matmul_grad_w,
                              ele_add_matmul_act_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(matmul_grad_dx, matmul_grad_dx,
                              ele_add_matmul_act_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(matmul_grad_dw, matmul_grad_dw,
                              ele_add_matmul_act_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(act_grad_op, act_grad,
                              ele_add_matmul_act_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(act_grad_dx, act_grad_dx,
                              ele_add_matmul_act_pattern);

    auto key =
        GetReserveSpaceCacheKey(matmul_grad_x->Var()->Name(), g->GetBlockId());
    if (!cache->HasFusedActivation(key)) {
      return;
    }
    auto *reserve_space_node = cache->GetFusedActivationSpace(key);

    std::vector<int64_t> matmul_grad_x_shape = matmul_grad_x->Var()->GetShape();
    std::vector<int64_t> matmul_grad_w_shape = matmul_grad_w->Var()->GetShape();

    // Note (Ming Huang): We only support matmul_v2_grad from paddle.nn.Linear
    // currently. The conditions below are used to verify wether matmul_v2
    // is created by paddle.nn.Linear
    auto matmul_grad_op_desc = matmul_grad_op->Op();
    if (!IsGemmFromLinear_(matmul_grad_x_shape, matmul_grad_w_shape,
                           matmul_grad_op_desc))
      return;

    auto activation_grad = act_grad_op->Op()->Type();

R
root 已提交
422 423
    bool trans_x, trans_y;
    GetTransposeAttrsFromOp(*matmul_grad_op_desc, &trans_x, &trans_y);
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
    OpDesc fused_gemm_epilogue_grad_op_desc(ele_add_grad_op->Op()->Block());
    fused_gemm_epilogue_grad_op_desc.SetType("fused_gemm_epilogue_grad");
    fused_gemm_epilogue_grad_op_desc.SetInput("DOut",
                                              {subgraph.at(dout)->Name()});
    fused_gemm_epilogue_grad_op_desc.SetInput("X", {matmul_grad_x->Name()});
    fused_gemm_epilogue_grad_op_desc.SetInput("Y", {matmul_grad_w->Name()});
    fused_gemm_epilogue_grad_op_desc.SetInput("ReserveSpace",
                                              {reserve_space_node->Name()});
    fused_gemm_epilogue_grad_op_desc.SetOutput("DX", {act_grad_dx->Name()});
    fused_gemm_epilogue_grad_op_desc.SetOutput("DY", {matmul_grad_dw->Name()});
    fused_gemm_epilogue_grad_op_desc.SetOutput("DBias",
                                               {ele_grad_dbias->Name()});
    fused_gemm_epilogue_grad_op_desc.SetAttr("activation_grad",
                                             activation_grad);
    fused_gemm_epilogue_grad_op_desc.SetAttr(
        "op_role", matmul_grad_op_desc->GetAttr("op_role"));
R
root 已提交
440 441
    fused_gemm_epilogue_grad_op_desc.SetAttr("trans_x", trans_x);
    fused_gemm_epilogue_grad_op_desc.SetAttr("trans_y", trans_y);
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496

    auto gemm_epilogue_grad_node =
        g->CreateOpNode(&fused_gemm_epilogue_grad_op_desc);

    IR_NODE_LINK_TO(subgraph.at(dout), gemm_epilogue_grad_node);
    IR_NODE_LINK_TO(matmul_grad_x, gemm_epilogue_grad_node);
    IR_NODE_LINK_TO(matmul_grad_w, gemm_epilogue_grad_node);
    IR_NODE_LINK_TO(gemm_epilogue_grad_node, act_grad_dx);
    IR_NODE_LINK_TO(gemm_epilogue_grad_node, matmul_grad_dw);
    IR_NODE_LINK_TO(gemm_epilogue_grad_node, ele_grad_dbias);
    IR_NODE_LINK_TO(reserve_space_node, gemm_epilogue_grad_node);

    GraphSafeRemoveNodes(g, {ele_add_grad_op, ele_grad_dx, matmul_grad_op,
                             matmul_grad_dx, act_grad_op});

    VLOG(4) << "\n\t " << subgraph.at(dout)->Name() << " and "
            << ele_grad_bias->Name() << " -> " << ele_add_grad_op->Name()
            << " -> " << ele_grad_dx->Name() << " and "
            << ele_grad_dbias->Name() << "\n\t " << ele_grad_dx->Name() << ", "
            << matmul_grad_x->Name() << " and " << matmul_grad_w->Name()
            << " -> " << matmul_grad_op->Name() << " -> "
            << matmul_grad_dx->Name() << " and " << matmul_grad_w->Name()
            << "\n\t " << matmul_grad_dx->Name() << " -> "
            << act_grad_op->Name() << " -> " << act_grad_dx->Name();
    found_ele_add_matmul_act_count++;
  };

  gpd(graph, handler);

  AddStatis(found_ele_add_matmul_act_count);
  return graph;
}

bool FuseGemmEpiloguePass::IsGemmFromLinear_(
    const std::vector<int64_t> &x_shape, const std::vector<int64_t> &w_shape,
    OpDesc *matmul_v2_op) const {
  if (w_shape.size() != 2 || x_shape.size() < 2) return false;
  for (auto attr_name :
       {"fused_reshape_Out", "fused_reshape_X", "fused_reshape_Y",
        "fused_transpose_Out", "fused_transpose_X", "fused_transpose_Y"}) {
    if (matmul_v2_op->HasAttr(attr_name)) {
      std::vector<int> tmp_vec =
          BOOST_GET_CONST(std::vector<int>, matmul_v2_op->GetAttr(attr_name));
      if (tmp_vec.size() > 0) return false;
    }
  }
  return true;
}

}  // namespace ir
}  // namespace framework
}  // namespace paddle

REGISTER_PASS(fuse_gemm_epilogue_pass,
              paddle::framework::ir::FuseGemmEpiloguePass);